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EXECUTIVE SUMMARY 

Coastal Ocean Dynamics Application Radar (CODAR) is a shore-based high-frequency (HF) 
surface wave radar system that can be used to measure surface currents up to 200 km from shore. 
Because of CODAR’s ability to provide real-time surface current data, the U. S. Coast Guard 
(CG) is investigating the utility of CODAR in Search and Rescue (SAR) mission planning. 

In 2003, the University of Connecticut (UCONN) developed a Short-Term Predictive System 
(STPS) that used CODAR data to make surface current predictions 24 hours into the future.  The 
STPS was initially developed using CODAR data from the standard CODAR system covering 
Block Island Sound (BIS).  CODAR-based STPS predictions were found to be significantly more 
accurate than those developed using National Oceanic and Atmospheric Association (NOAA) 
tide data.  Based on this initial success, additional CODAR development was pursued.  Specific 
development initiatives included in the present study were to: 

• Extend the STPS to an existing long-range CODAR system that is not dominated by tidal 
flow (i.e., Mid-Atlantic Bight (MAB).  Apply and evaluate the effect of geometric 
dilution of precision (GDOP) filtering of CODAR data in the enhanced version of the 
STPS.  In this instance, GDOP filtering was found to substantially decrease STPS current 
prediction errors. 

• Upgrade STPS by adding the capability to incorporate the effects of wind forcing and 
evaluate the impact of including wind forcing.  In addition, the STPS was enhanced by 
the use of covariance estimates in the Gauss-Markov procedure.  Adding forecast winds 
improved the average accuracy of current forecasts by approximately 10 to 20 percent in 
the first 5 hours of the forecast in the MAB region depending on the quality of the 
CODAR data used to make the prediction.  The improvement was less for longer 
prediction times.  This limited impact of the wind component may reflect the lack of 
significant wind events during the study period or inadequacies in the statistical approach 
to incorporate winds. 

• Further investigate the accuracy and sources of error in using CODAR data and STPS to 
determine drift trajectories as compared to more conventional methods of estimating 
surface drift (including NOAA tidal data, Mariano climatology data, and last known 
position).  This was accomplished for both Block Island Sound and the Middle Atlantic 
Bight by computing separation distance between model-predicted and actual Self-
Locating Datum Marker Buoys (SLDMB) positions.  In both the BIS and MAB, the 
evaluation showed that trajectories calculated from real-time CODAR data provided 
some improvement in predicting SLDMB locations relative to conventional prediction 
approaches.  The STPS provided a measurable improvement over conventional 
techniques only in BIS. 

• Investigate methods of determining and incorporating error and sub-grid uncertainty 
terms into Monte Carlo trajectory models derived from the comparison of CODAR and 
SLDMB trajectory data.  In this part of the study, random walk (RW) and random flight 
(RF) methods were compared for simulating the transport of surface drifters.  Differences 
in RW and RF search area size are small when comparable input parameters were used.  
Both models were highly sensitive to the effect of uncertainties in dispersion.   
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• Identify the current quality and utility of HF radar products for SAR.  For the MAB in 
summer, it was determined that CODAR improvements did reduce drifting body 
prediction error by approximately 20 percent relative to present techniques.  
Improvements in the processing and filtering of CODAR returns provided the largest 
benefit in this study, suggesting that additional work in this area may be called for.  The 
time series analysis techniques employed in this study produced smaller and less 
consistent improvements. 

• Evaluate the capabilities of the prototype SAROPS environmental data server (EDS), 
which was extended to retrieve CODAR and STPS surface current data and forecasts 
from the MAB CODAR region.  This effort demonstrated that the SAROPS EDS is 
capable of collecting and disseminating CODAR current data and STPS predictions. 

• Conduct an operational test and evaluation (T&E) at CG Group Moriches, in which 
CODAR and STPS data were utilized in actual SAR mission planning.  The T&E showed 
that STPS and CODAR data could be effectively acquired, interpreted, and used by CG 
SAR mission planners. 

 
CODAR and STPS are maturing technologies that have demonstrated the ability to improve CG 
operational planning.  Presently, however, CODAR and STPS are not ready for operational use 
in SAROPS.  The following recommendations are provided to make them viable for operational 
use in SAROPS. 

• Through Oceans.US, the CG should  
a. Encourage initiatives to improve the accuracy and coverage of HF radar arrays,  
b. Encourage development of enhancements to STPS in HF radar coverage regions. 
c. Partner with the HF radar community to ensure that the CG requirements are 

recognized. 
• In the SAROPS development process, G-OPR should include methodologies in the EDS 

to fill the gaps where no data or invalid surface current data exist.   
• In conjunction with the Operations System Center, G-OPR should develop an archive to 

store SLDMB data, and periodically calculate and store regionally representative 
dispersion coefficients from SLDMB trajectories.  Archived SLDMB data could also be 
matched with seasonal and environmental conditions to provide better historical current 
estimates in areas where CODAR/STPS is not available. 

• G-OPR should support further research on the impact of forecast wind change on STPS 
current estimates. 



vii 

TABLE OF CONTENTS 

EXECUTIVE SUMMARY.................................................................................................................... v 
LIST OF FIGURES ............................................................................................................................... ix 
LIST OF TABLES ................................................................................................................................. xiv 
LIST OF ACRONYMS.......................................................................................................................... xv 
1.  INTRODUCTION............................................................................................................................. 1-1 

1.1. Background................................................................................................................................1-1 
1.2. Project description .....................................................................................................................1-4 

2.  MODIFICATIONS TO STPS FOR THE MAB APPLICATION................................................ 2-1 
2.1. Enhancements adopted from the MAB algorithm .....................................................................2-2 
2.2. Incorporation of NOAA buoy data into STPS...........................................................................2-3 
2.3. Use of “forecast” winds derived from NOAA buoy data ..........................................................2-4 
2.4. Summary of STPS extension efforts..........................................................................................2-6 

3.  EVALUATION OF PREDICTIVE METHODS IN ESTIMATING DRIFTER   
TRAJECTORIES ............................................................................................................................. 3-1 
3.1 Mid-Atlantic bight SLDMB deployments .................................................................................3-1 
3.2 Block Island Sound SLDMB deployments................................................................................3-6 
3.3 Summary of results ....................................................................................................................3-9 

4.  OTHER FACTORS AFFECTING USABILITY OF CODAR AND STPS FOR SEARCH 
PLANNING....................................................................................................................................... 4-1 
4.1. Surface current dispersion .........................................................................................................4-1 
4.2. Monte Carlo characterization of dispersion...............................................................................4-3 
4.3. Monte Carlo simulation results..................................................................................................4-4 
4.4. Discussion of Monte Carlo modeling results.............................................................................4-6 

5.  EXTENSION OF THE PROTOTYPE SAROPS ENVIRONMENTAL DATA RETRIEVAL 
SUBSYSTEM TO EXTRACT STANDARD CODAR DATA FIELDS AND THEIR 
ASSOCIATED STPS FORECASTS............................................................................................... 5-1 
5.1 Prototype SAROPS EDS ...........................................................................................................5-1 

5.1.1. Catalog server ..................................................................................................................5-1 
5.1.2. EDS Web Services...........................................................................................................5-3 

5.2. CODAR/STPS...........................................................................................................................5-4 
5.3. NDBC winds..............................................................................................................................5-4 
5.4. SLDMB data..............................................................................................................................5-5 
5.5. Conclusions on extension of the prototype SAROPS environmental data retrieval 

subsystem ..................................................................................................................................5-5 
6.  OPERATIONAL TEST AND EVALUATION .............................................................................. 6-1 

6.1. Test description..........................................................................................................................6-1 
6.2. Controller feedback ...................................................................................................................6-3 
6.3. SAROPS and EDS interaction...................................................................................................6-3 
6.4. Test case comparisons ...............................................................................................................6-4 



viii 

6.4.1. STPS forecast versus CODAR analysis...........................................................................6-4 
6.4.2. CODAR/STPS versus C2PC/JAWS comparisons inside the CODAR/STPS 

coverage area ...................................................................................................................6-4 
6.4.3. CODAR/STPS versus C2PC/JAWS comparisons outside the CODAR/STPS 

coverage area ...................................................................................................................6-5 
6.5. Summary of the CODAR/STPS operational T&E ....................................................................6-6 

7.  SUMMARY AND RECOMMENDATIONS .................................................................................. 7-1 
7.1. STPS modifications ...................................................................................................................7-1 
7.2. STPS and CODAR prediction of SLDMB trajectories .............................................................7-1 
7.3. Factors affecting usability of HF radar products .......................................................................7-2 
7.4. Operational demonstration of SAROPS ....................................................................................7-2 
7.5. Recommendations for the U.S. Coast Guard.............................................................................7-3 
7.6. CODAR/HF radar community specific recommendations........................................................7-4 

8.  REFERENCES.................................................................................................................................. 8-1 
APPENDIX A.  DESCRIPTION OF THE RUTGERS UNIVERSITY CODAR DATA 

PROCESSING ............................................................................................................ A-1 
APPENDIX B. STPS ENHANCEMENTS IN THE BIS REGION .................................................. B-1 
APPENDIX C. THE OPERATIONAL PREDICTION OF CIRCULATION AND    

LAGRANGIAN TRAJECTORIES IN THE COASTAL OCEAN ........................ C-1 
APPENDIX D. TRAJECTORY PREDICTION USING HF RADAR SURFACE          

CURRENTS: MONTE-CARLO SIMULATIONS OF PREDICTION 
UNCERTAINTIES ..................................................................................................... D-1 

APPENDIX E. A HIERARCHY OF STOCHASTIC PARTICLE MODELS FOR SEARCH     
AND RESCUE (SAR): APPLICATION TO PREDICT SURFACE DRIFTER 
TRAJECTORIES USING HF RADAR CURRENT FORCING ........................... E-1 

 



ix 

LIST OF FIGURES 

Figure 1-1.   The coastline and bathymetry of Block Island Sound with the location and 
approximate observation areas of three CODAR sites. ............................................ 1-2 

Figure 1-2.   The typical spatial coverage of the BIS CODAR system operated by URI and 
UCONN..................................................................................................................... 1-2 

Figure 1-3.   MAB CODAR coverage for July/August 2004. ....................................................... 1-3 

Figure 2-1.   MAB CODAR coverage for July/August 2004, showing percent radar return 
percentages (color coded) and using the GDOP-filtered data................................... 2-3 

Figure 2-2.   The RMS difference between area-averaged MAB CODAR east and north 
components of surface current for August 2004 as a function of current 
forecast period (hrs) using measured wind (dashed lines) and no wind forcing 
(solid lines)................................................................................................................ 2-4 

Figure 2-3.   The evolution of the area-averaged RMS difference between the forecast 
current components using the enhanced STPS algorithm with measured wind 
and with measured and forecast wind in the MAB area. .......................................... 2-5 

Figure 3-1.   Drifter trajectories in the MAB study area in July–Sept 2004.................................. 3-1 

Figure 3-2.   Trajectories in the MAB study area in March–April 2003. ...................................... 3-2 

Figure 3-3.   Histograms of the separation between the predicted and actual locations of 
SLDMBs in the MAB study area. ............................................................................. 3-3 

Figure 3-4.   The evolution of the 95th  percentile value of separation distance between 
drifters and simulated trajectories in the MAB based on CODAR data. .................. 3-4 

Figure 3-5.   Histograms of the separation between the predicted and actual locations of 
SLDMBs in the MAB study area. ............................................................................. 3-5 

Figure 3-6.   The evolution of the 95th percentile separation distance between drifters and 
simulated trajectories in the MAB based on CODAR data, the STPS 
predictions, LKP, and Mariano climatology. ............................................................ 3-6 

Figure 3-7.   Deployment locations of SLDMBs (red dots) and their subsequent trajectories 
in BIS. ....................................................................................................................... 3-7 

Figure 3-8.   Histograms of the separation between the predicted and actual locations of 
SLDMBs in the MAB study area, shown as the number of endpoints (N) vs. 
separation distance (km) at 3, 6, 12, and 24 hours. ................................................... 3-8 

Figure 3-9.   The evolution of the 95th percentile separation distance between drifters and 
simulated trajectories in the BIS based on CODAR data, the STPS algorithm, 
last known position (LKP), and NOAA tidal current predictions............................. 3-9 

Figure 4-1.   Containment areas resulting from different dispersion coefficients. ........................ 4-2 

Figure 4-2.   Analytical solution of predicted search areas (separation) as a function of time 
for the RW and RF models........................................................................................ 4-4 



x 

Figure 4-3.   Illustration showing actual 24 hr SLDMB track and predicted drifter 
trajectory. .................................................................................................................. 4-5 

Figure 4-4.   A comparison of RW and RF Monte Carlo simulation results for the MAB 
region......................................................................................................................... 4-6 

Figure 5-1.   Schematic of SARMAP (SAROPS) clients connecting to EDS for 
environmental data needs. ......................................................................................... 5-3 

Figure 5-2.   Example SARMAP Graphical User Interface (GUI) connecting to EDS for 
user selection of environmental data......................................................................... 5-4 

Figure 5-3.   Example SARMAP Graphical User Interface (GUI) connecting to the EDS 
for user selection of NDBC wind data. ..................................................................... 5-5 

Figure 6-1.   Three SLDMBs deployed as targets.......................................................................... 6-2 

Figure 6-2.   Comparison of CODAR/STPS and C2PC/JAWS results inside the 
CODAR/STPS coverage area. .................................................................................. 6-5 

Figure 6-3.   Comparison of CODAR/STPS and C2PC/JAWS results outside the 
CODAR/STPS coverage area. .................................................................................. 6-6 

Figure A-1.   Transmit (left) and receive (right) antennas for a typical CODAR-type long-
range system............................................................................................................. A-1 

Figure A-2.   Sample radial vector coverage for a long-range and standard-range HF radar 
system....................................................................................................................... A-2 

Figure A-3.  Surface current map of January 19, 2005 at 20:00 GMT.  Coverage is shown 
for the long-range (left) and standard-range (right) systems.................................... A-2 

Figure A-4.   Surface current map combined with (right) and without (left) the geometric 
filter. ......................................................................................................................... A-4 

Figure A-5.   Tracks of the seven drifters deployed between July 27, 2004 and 
August 31, 2004. ...................................................................................................... A-5 

Figure A-6.   Drifter track, CODAR coverage area, and time series of the east and north 
velocity components from drifter locations, CODAR, and Mariano 
climatology............................................................................................................... A-7 

Figure B-1.   Area-averaged RMS error in the east and north components of the surface 
currents estimated by the original STPS algorithm and the enhanced STPS 
algorithm with local covariance and covariance component modifications in 
the BIS region. ......................................................................................................... B-1 

Figure B-2.   The distribution of the time-averaged RMS error in the surface current 
predictions of original and new STPS in the BIS area............................................. B-2 

Figure B-3.   Area-averaged RMS error in the predicted east and north velocity components 
of the surface currents estimated by the enhanced STPS algorithm without 
wind data and the enhanced algorithm with measured wind data in the BIS 
area. .......................................................................................................................... B-3 



xi 

Figure C-1.   The coastline and bathymetry of Block Island Sound with the location and 
approximate observation areas of three CODAR sites. ........................................... C-3 

Figure C-2.   Trajectories of drifters launched in the area of Block Island Sound in 
December 2002 and March 2003. ............................................................................ C-5 

Figure C-3.   Uncertainty in the eastward and northward components of the tidal current 
predictions. ............................................................................................................... C-7 

Figure C-4.    Estimated uncertainty in CODAR current observations. ......................................... C-9 

Figure C-5. Autocovariance functions for u and v, averaged over the entire CODAR 
domain for the month of November 2002.............................................................. C-10 

Figure C-6.    RMSU  differences averaged over the entire domain as a function of forecast 
lag. .......................................................................................................................... C-11 

Figure C-7.    Spatial structure of the RMS differences for predictions made using the 
hedging method and the Gauss-Markov method, evaluated 6 hours after the 
prediction was made............................................................................................... C-13 

Figure C-8.    Spatial structure of the RMS differences for predictions made using the 
hedging method and the Gauss-Markov method, evaluated 12 hours after the 
prediction was made............................................................................................... C-14 

Figure C-9.    Spatial structure of the RMS differences for predictions made using the 
hedging method. ..................................................................................................... C-15 

Figure C-10.   Observed RMS difference between observed and predicted currents at 12 
hours versus the sum of the errors in the observations and in the predictions 
(tidal and non-tidal) (a), for the eastward component and (b), for the 
northward component............................................................................................. C-17 

Figure C-11.   The solid curves are the root mean square (RMS) difference between 
predicted and observed current, averaged over the entire CODAR domain, as 
a function of the time since the prediction using the Gauss-Markov method........ C-17 

Figure C-12.   Comparison of CODAR currents in December 2002 with predicted currents 
using the Gauss-Markov method 12 hours prior to the observation times. ........... C-19 

Figure C-13.   Differences between observed and predicted (using the Gauss-Markov 
method and evaluating at forecast lag of 12 hours) currents versus the wind 
measured at National Data Buoy Center buoy 44017. ........................................... C-20 

Figure C-14.   Sample Trajectory Predictions. .............................................................................. C-22 

Figure C-15.   Block Island Region Trajectory Error Histograms. ............................................... C-23 

Figure C-16.  Block Island Region 95th Percentile Separation..................................................... C-24 

Figure C-17.   Block Island Region 24-hour Separation versus Wind. ......................................... C-26 

Figure D-1.   Trajectories of surface drifters deployed during December 2002 and March 
2003 in the Block Island CODAR region. ............................................................... D-3 



xii 

Figure D-2.   Trajectories of surface drifters deployed during March 2003 and July 2004 
that passed through the New Jersey shelf CODAR domain..................................... D-4 

Figure D-3.   Lagged covariance functions of time series of differences between drifter 
velocity and CODAR velocity averaged over all drifters within the Block 
Island region and the New Jersey shelf region......................................................... D-8 

Figure D-4.   Example drifter trajectory within the Block Island CODAR region showing 
the real drifter path over 24 hrs in red and the CODAR predicted position in 
green, with final positions denoted by the circles. ................................................... D-9 

Figure D-5.   The number of comparisons between predicted and true drifter position versus 
time for no screening and for screening using the 10 percent coverage zone 
for the Block Island region and New Jersey Shelf region...................................... D-10 

Figure D-6.   Separation between actual and predicted drifter position as a function of time 
since start of prediction, averaged over all trajectory segments that start 
within the nominal coverage zone for the Block Island region and the New 
Jersey shelf region.................................................................................................. D-11 

Figure D-7.   Comparison of the uncertainty bounds for predicted drifter position using the 
random flight and random walk turbulence models for the Block Island region 
and New Jersey shelf region. ................................................................................. D-13 

Figure E-1.   Time series of the mean squared separation obtained using Model 1.....................E-10 

Figure E-2.   Time series of percent error for Model 1. ...............................................................E-11 

Figure E-3.   Time series of the cumulative squared error for Model 1. ......................................E-11 

Figure E-4.  Time series of the mean squared separation obtained from Model 2......................E-12 

Figure E-5.   Time series of percent error for the Model 2. .........................................................E-13 

Figure E-6.   Time series of cumulative squared error for Model 2.............................................E-13 

Figure E-7.   Time series of the mean squared separation obtained for K= 1, 10, and 20 
m2/sec, using Models 1 and 2 (T= 1 day) and 5,000 particles. ...............................E-14 

Figure E-8.   Time series of the mean squared separation obtained for Model 2 (T= 0.5, 1, 
and 10 days), using K=1 m2/sec and 5000 particles................................................E-15 

Figure E-9a.   Trajectories of SLDMB drifters released in the Block Island Sound area..............E-18 

Figure E-9b.   Trajectories of SLDMB drifters released in the Mid Atlantic Bight area...............E-19 

Figure E-10.   Wind time series for July 27 to September 1, 2004 at NOAA/NBDC stations 
44017, BUZM3, 44025, and ALSN6. .....................................................................E-20 

Figure E-11a.  Power spectra of the wind (buoy 44025) and east/west and north/south 
components of the currents derived from the SLDMB 43057, from CODAR 
grid cell 349, and from CODAR along the trajectory of SLDMB 43057...............E-21 

Figure E-11b.  Power spectra for the east/west and north/south components of the currents 
derived from the SLDMB 43057 and 43061...........................................................E-22 



xiii 

Figure E-12.   Mean squared separation distance squared versus time for each cluster of 
drifters. ....................................................................................................................E-23 

Figure E-13a.  Mean squared separation distance versus time for cluster RI_A. ...........................E-24 

Figure E-13b.  Mean squared separation distance versus time for cluster AB_A. .........................E-25 

Figure E-14.   Mean squared separation distance versus time for cluster AB_A and AB-B 
restricted to the first 5 days of the experiment. .......................................................E-26 

Figure E-15a.  Autocorrelation of the east component of the velocity versus lag time for the 
original CODAR and de-tided CODAR data from location 349 in the Mid 
Atlantic Bight. .........................................................................................................E-27 

Figure E-15b.  Autocorrelation of the north component of the velocity versus lag time for the 
original CODAR and de-tided CODAR data from location 349 in the Mid 
Atlantic Bight. .........................................................................................................E-28 

Figure E-16a.  Time series of the SLDMB and CODAR derived currents and the difference 
between the two for drifters released in Block Island Sound..................................E-30 

Figure E-16b.  Time series of the SLDMB and CODAR derived currents and the difference 
between the two for drifters released in Block Island Sound and transported 
into the Mid Atlantic Bight. ....................................................................................E-31 

Figure E-16c.  Time series of the SLDMB and CODAR derived currents and the difference 
between the two for drifters released in the Mid Atlantic Bight.............................E-32 

Figure E-17.   Scatter plots for the east and north components of the velocity derived from 
the CODAR and SLDMB data, with associated correlation coefficient.................E-33 

Figure E-18.   Observed SLDMB trajectories and corresponding SARMAP predictions for 
1-day simulations, restarted every day along the SLDMB path. ............................E-36 

Figure E-19.   Histograms of the separation distance between model-predicted and observed 
for the SLDMBs at 3, 6, 12, and 24 hrs after the start of the simulation. ...............E-37 

Figure E-20.   Average and 95th percentile separation distance as a function of time from the 
start of the simulation..............................................................................................E-38 

Figure E-21.   Separation distance between predicted and observed locations of the SLDMB 
at the end of each day versus distance traveled by the SLDMB during that 
day. ..........................................................................................................................E-39 

Figure E-22.   Histogram of dispersion coefficients based on an application of a random 
walk model to the separation distances at the end of 1-day simulation. .................E-40 



xiv 

LIST OF TABLES 

Table 4-1.  Summary of Dispersion Coefficients K for BIS and MAB regions calculated 
using the variance of the difference between SLDMB and CODAR velocities 
in the BIS and the MAB regions. .............................................................................. 4-3 

 
Table 5-1.   NDBC stations accessed by prototype EDS.............................................................. 5-2 

 
Table 6-1.   Controller feedback. .................................................................................................. 6-3 

Table 6-2.   Statistical comparison of CODAR/STPS versus C2PC/JAWS inside the 
CODAR/STPS coverage area. .................................................................................. 6-5 

Table 6-3.  Statistical comparison of CODAR/STPS versus C2PC/JAWS outside the 
CODAR/STPS coverage area. .................................................................................. 6-6 

 
Table A-1. Comparison statistics among drifter velocity, Mariano climatology, and 

CODAR observations............................................................................................... A-6 

 
Table C-1.  Major tidal constituents in FRONT area.................................................................. C-6 

 
Table D-1.  R&DC Mid Atlantic Bight drifter releases during 2002-2004. ............................... D-5 

Table D-2.  Estimates of turbulence parameters from autocovariance functions of drifter-
CODAR velocity differences for the two CODAR regions..................................... D-9 

 
Table E-1.  Summary of SLDMBs deployed on July 27, 2004 by CG......................................E-16 

Table E-2.  Minimum, average, maximum, and standard deviation of SLDMB drifter 
speeds for each drifter. ............................................................................................E-17 

Table E-3.  Dispersion values estimated from cluster separation statistics assuming a 
random walk model.................................................................................................E-24 

Table E-4.  Estimates of the dispersion coefficients based on CODAR data for Block 
Island Sound and Mid Atlantic Bight......................................................................E-34 

Table E-5.  Number of simulations performed for each SLDMB. ............................................E-35 



xv 

LIST OF ACRONYMS 
AOI 
AOR 
ArcGIS 
ASA 
ASCII 
BIS 
C2PC 
CASP 
CG 
CJMTK 
CODAR 
CTF 
DMB 
EDS 
ESRI 
FTP 
GDOP 
GIS 
GMT 
GRUMOR 
GUI 
HF 
HTML 
HTTP 
IAMSAR 
JAWS 
LKP 
MAB 
NDBC 
NetCDF 
nmi 
NOAA 
OPCEN 
OPeNDAP 
OSC 
OSCAR 
PIW 
POS 
R&DC 
RDT&E 
RF 
RMS 
RW 
SAP 
SAR 

Area of Interest 
Area of Responsibility 
Integrated collection of GIS software Program 
Applied Science Associate 
American Standard Code for Information Exchange 
Block Island Sound 
Command and Control Personal Computer 
Computer-Assisted Search Planning 
United States Coast Guard 
Commercial Joint Mapping Tool Kit 
Coastal Ocean Dynamics Application Radar 
Coastmap Text Format 
Datum Marker Buoy 
Environmental Date Server 
Environmental Systems Research Institute, Inc. 
File Transfer Protocol 
Geometric Dilution of Precision 
Geographical Information System 
Greenwich Mean Time 
CG Group Moriches 
Graphical User Interface 
High Frequency 
Hypertext Markup Language 
Hypertext Transfer Protocol 
International Aeronautical and Maritime Search and Rescue 
Joint Automated Worksheets 
Last Known Position 
Mid-Atlantic Bight 
National Data Buoy Center 
Network Common Data Form 
Nautical miles 
National Oceanic and Atmospheric Association 
Operations Center 
Open-source Project for a Network Data Access Protocol 
Operations System Center 
Ocean Surface Currents Analysis-Real Time 
Person in the Water 
Probability of Success 
Research and Development Center 
Research Development Testing and Evaluation 
Random Flight 
Root-Mean-Squared 
Random Walk 
Search Action Plan 
Search and Rescue 



xvi 

SARMAP 
SAROPS 
SLDMB 
SNR 
SOAP 
SRU 
STPS 
T&E 
URI 
UCONN 
WERA 
XML 
 

Search and Rescue Model System 
Search and Rescue Optimal Planning System 
Self-Locating Datum Marker Buoys 
Signal to Noise Ratio 
Simple Object Access Protocol 
Search and Rescue Unit 
Short-Term Predictive System 
Test and Evaluation 
University of Rhode Island 
University of Connecticut 
WEllen Radar 
Extensible Markup Language 
 

 



1-1 

1.  INTRODUCTION 

1.1. Background 

The U.S. Coast Guard (CG) Research and Development Center (R&DC) conducted research, 
development, testing, and evaluation (RDT&E) to evaluate high frequency (HF) surface wave 
radar systems that exploit the Doppler shift in the Bragg scatter of the sea surface to measure 
surface currents in real time. Several surface current mapping systems (e.g. Coastal Ocean 
Dynamics Application Radar (CODAR), WEllen Radar (WERA), and Ocean Surface Currents 
Analyses-Real time (OSCAR)) have been developed and are now commercially available 
(Teague, Vesecky, & Fernandez, 1997).  CODAR SeaSonde systems are the HF surface wave 
radar systems currently used in the Block Island Sound (BIS) and Mid-Atlantic Bight (MAB) 
regions covered in this report.  Although the name “CODAR” is used throughout this report, 
other brands of hardware could have been used had they been available for the study area.  
CODAR systems are owned and operated by university oceanographers and provide surface 
current data for many areas adjacent to the U.S. coastline via the Internet.  With recent advances 
in processing speed and Internet-based data dissemination, ocean current measurements provided 
by CODAR may improve CG mission effectiveness and efficiency in carrying out search and 
rescue (SAR) cases. 

In 2002, the R&DC funded a study (Ullman, O'Donnell, Edwards, Fake, Morschauser, Sprague, 
Allen, & Krenzien, 2003) with participation by the University of Connecticut (UCONN) and 
University of Rhode Island (URI) to investigate more closely the application of data from the 
Block Island Sound (BIS) CODAR system in Search and Rescue (SAR) planning.  The BIS 
CODAR system is a standard-range 25-MHz CODAR system, owned and operated by URI and 
UCONN.  It operates from three stations:  Montauk Point, NY; Southeast Light House, Block 
Island, RI; and Misquamicut, RI. The locations of the BIS CODAR transmitters and the 
approximate operating ranges of each transmitter are shown in Figure 1-1.  Using direction- and 
range-finding algorithms, each station measures radial surface current velocities every 
10 minutes.  These radial velocities are filtered and used to calculate the surface current 
velocities for the BIS, a region approximately 40 x 40 kilometers (km), with grid cells every 
1.5 km.  The depth of the water column over which currents are measured is dependent on the 
transmitter frequency: at 25-MHz, surface currents in the upper 0.5 meters of the water column 
are measured.  Theoretically, the current field is resolved in areas where the arcs of at least two 
of the transmitters intersect.  Coverage is lost, however, in the shadow of a land mass, such as 
Block Island, or in the line of sight between two stations, or at the outer range of each 
transmitter.  The system produces surface current maps at one hour intervals.  A map depicting 
surface current typical coverage of the BIS system is shown in Figure 1-2.  

Ullman, et al, (2003) focused on the following three tasks.  (1) develop a Short-term Predictive 
System (STPS) based upon surface current fields estimated from CODAR data in the Block 
Island Sound (BIS) region; (2) develop an environmental data server (EDS) Web site for 
collecting and disseminating CODAR data fields and forecast fields from the STPS; and 
(3) compare the actual trajectories of surface drifters with predicted trajectories based upon 
CODAR, STPS, and the nearest National Oceanographic and Atmospheric Administration 
(NOAA) tidal current prediction stations.   
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Figure 1-1.  The coastline and bathymetry of Block Island Sound with the location and 

approximate observation areas of three CODAR sites. 

 

 
Figure 1-2.  The typical spatial coverage of the BIS CODAR system operated by URI and 

UCONN. 



1-3 

 
In the present project, the features of the BIS CODAR system is extended to the CODAR 
network for the Middle Atlantic Bight (MAB).  The MAB CODAR system is a long-range 
system consisting of ten stations operated by Rutgers University.  Six of these stations are lower-
resolution, long-range sites.  With an approximate 5-MHz operating frequency, these sites 
measure surface currents within the upper 2.4 meters of the water column (Stewart and 
Joy, 1974).  Typical spatial resolutions are on the order of 6 km (grid cell size) with maximum 
ranges exceeding 200 km.  A cluster of four sites along the coast of New Jersey extending 
between Wildwood and Sandy Hook form the MAB CODAR network for this study, which 
provides hourly surface current maps over an area approximately 150 x 100 km off the New 
Jersey coast.  These sites use global positioning system (GPS) time synchronization so that each 
site operates at the same frequency and is bi-statically linked to the other sites in the network.  
The CODAR system samples data continuously and outputs a 4-hour running average every 
hour. Processing of the CODAR data performed by Rutgers University is further outlined in 
Appendix A.  Figure 1-3 shows the MAB CODAR coverage for July/August 2004.  The black 
line in the figure bounds the 50 percent contour coverage for the length of the deployment, i.e., 
grid points inside the black line had returns more than 50 percent of the time; grid points outside 
of the black line had returns less than 50 percent of the time.  The 50 percent contour coverage is 
based on data from the 27 July to 31 August 2004 deployment period.  

.  

Figure 1-3.  MAB CODAR coverage for July/August 2004. 

 
In a separate effort, the CG has been developing a system for search planners, called Search and 
Rescue Optimal Planning System (SAROPS).  SAROPS is intended to replace both of the CG’s 
presently fielded search planning tools, Command and Control Personal Computer (C2PC) SAR 
Tools and Computer-Assisted Search Planning (CASP).  A prototype graphical user interface 
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(GUI) has been provided by the SAROPS developer as part of this study to see how SAR 
controllers could utilize the current fields provided by CODAR in SAROPS to plan search 
efforts.  Procedures and results are presented in Section 6 of this report. 

1.2. Project description 

The goal of this project is to resolve the potential benefits to SAR Planning of adapting the STPS 
to a larger and more generalized CODAR network.  The elements of this project are (1) modify 
the STPS developed for the tidally-dominated BIS to the larger MAB where circulation is 
dominated by winds and other processes; (2) develop and exercise new analysis procedures to 
incorporate wind forcing into STPS; (3) identify the processes or factors that affect the 
performance of the CODAR-based surface current predictions in the MAB; and finally (4) 
conduct an operational test of the system to identify its skill and to identify the direction and 
potential benefits of future work in this area. 
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2.  MODIFICATIONS TO STPS FOR THE MAB APPLICATION 

The STPS developed in Ullman et al, (2003) is based on the decomposition of the CODAR 
measured currents into tidal and non-tidal components (i.e., wind-driven motion and motion 
associated with ocean density variations and very low frequency waves).  At each grid point, 
tidal currents are predicted using tidal constituents derived from a harmonic analysis of a one-
month record of CODAR surface currents. A Gauss-Markov estimator is used to predict the non-
tidal component of currents.  The current prediction is the sum of the predicted tidal and non-
tidal currents.   

The Gauss-Markov estimator, based on auto- and cross-covariance functions, is used to predict 
the non-tidal component of current (Ullman, O'Donnell, Kohut, Fake, Allen, 2005).  The 
covariance function is a series that measures how similar a time series signal is to a time-shifted 
version of itself or another series of values.  For example, in a tidally-dominated area, the 
autocovariance series will have a high value at time lags corresponding to tidal periodicities (e.g. 
12.4 hours).  The Gauss-Markov estimator calculates filter weights that also are a function of 
time lag, which are then used to generate a prediction of future values based on a memory effect 
created from previous values through the covariance function.  Predictions are produced on an 
hourly basis and extend for 25 hours into the future.  

The Gauss-Markov estimator is used in two ways in this study.  In the first application, it derives 
a series of weights that are calculated from the autocovariance of previous current data that are 
then applied to recent values to predict future currents (i.e. for the next 25 hours).  In the second 
application, the cross-covariance between previous surface wind measurements and surface 
currents derived from CODAR will be used to estimate future currents. 

The STPS developed for BIS did not explicitly account for wind forcing in the BIS because its 
circulation is considered to be tidally dominated.  In exercising the STPS and comparing the 
results to SLDMB trajectories in the Middle Atlantic Bight, it seemed likely that a second 
generation model that included wind forcing could improve forecast accuracy in areas where 
there is a significant wind-driven surface current component.  

The STPS algorithm was extended to accommodate data from the MAB between southern Long 
Island and the mouth of Delaware Bay.  The following modifications were implemented and 
tested in STPS: 

• Covariance calculated for each grid point, instead of a region-wide average, was used in 
the Gauss-Markov procedure to account for local geographic and bathymetric effects. 

• Covariance was calculated between the east and north velocity components of current at 
each grid point to account for the Coriolis effect. 

• Improvements were incorporated into the MAB CODAR processing algorithm, including 
geometric dilution of precision (GDOP) and percentage return filtering. 

• Measured wind data from a moored buoy in the vicinity of the CODAR coverage area 
was used to calculate the covariance function with the CODAR data.  The wind data were 
used in two ways.  First, wind observations prior to each time step were used to predict 
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future surface currents and second, “predicted” winds, (actually wind observations) were 
used to predict future surface currents. 

 
The incorporation of local covariance and east and north velocity component covariance into the 
Gauss-Markov estimator (items 1 and 2 above) did not provide significant improvements to the 
model’s predictive skill.  These improvements were retained in the STPS, but are not discussed 
further.  Details of the STPS enhancements in the BIS region are described in detail in   
Appendix B. 

2.1. Enhancements adopted from the MAB algorithm 

To further refine the CODAR data for the present project, Rutgers University implemented a 
new algorithm for combining CODAR radials that incorporated two improvements:  a 50 percent 
return mask and GDOP filtering (Kohut, Roarty, Glenn, 2004).  Each hour, the available radial 
vector maps were combined into a single total vector map.  All radial component vectors within 
10 km were used to calculate the vector at each grid point, but a total vector was generated only 
if at least three radial vectors from at least two remote sites were used in the combination.  The 
uncertainty of the combined totals was separated into radial vector uncertainty based on the 
number of radials in the 4-hour average, signal to noise ratio (SNR), and geometric dilution of 
precision (GDOP) (e.g. see Riddles, 2003).  Scalar values (Chapman and Graber, 1997) were 
calculated based on the intersection angles of radial vectors within 10 km of each grid point and 
compared with a scalar threshold.  The expected error in the surface current vector due to GDOP 
calculated from two radials increases as their intersection angle diverges from the orthogonal.  
For this project, the scalar GDOP threshold was calculated to be 1.25, corresponding to 
intersection angles less than 30 degrees or greater than 150 degrees.  These filters reduced the 
size of the CODAR coverage area, but they improved the quality of the data.   

Figure 2-1 shows MAB CODAR coverage when the filtering algorithm was used for 
July/August 2004.  The black line in the figure bounds the 50 percent contour coverage for the 
length of the deployment.  The 50 percent contour coverage is based on data from the 27 July to 
31 August 2004 deployment period.  When the GDOP and percent return constraints were used 
to filter the set of CODAR data used to generate current predictions (referred to below as the 
“New Gauss-Markov” predictor), the root-mean-squared (RMS) error of the predictions was 
reduced by approximately 20 percent. 
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Figure 2-1.  MAB CODAR coverage for July/August 2004, showing percent radar return 

percentages (color coded) and using the GDOP-filtered data.  (Note: The 
approximate location of NOAA buoy 44025 is at the top of the 50 percent 
coverage area.) 

2.2. Incorporation of NOAA buoy data into STPS 

The first attempt to incorporate wind data into STPS involved the use of previous wind 
observations to construct predictions of near future non-tidal residual currents.  Wind data from 
the closest operating NOAA buoy (#44025) were used for this exercise.  We chose a seven day 
period during August 2004 when winds were highest (~5 m/s) to maximize the influence of 
wind.  First, previous winds and CODAR current fields were used to establish filter weights for 
the Gauss-Markov estimator.  Next, at each time step, the wind-driven residual current was 
predicted for the upcoming 24 hour period.  This prediction was made with the Gauss-Markov 
estimator using observed winds and CODAR current fields from the previous 24 hour period. 
For the purpose of identifying the degree of improvement, an initial run was made where winds 
were set to zero, such that only the basic features of the STPS, tides plus a residual current 
estimated using the Gauss-Markov estimator, were in play.  

The improvement provided by using recent buoy winds with the basic STPS for August 2004 is 
summarized in Figure 2-2 by plotting the spatially-averaged RMS differences between the STPS 
and CODAR surface current components versus forecast time for the August study period.  The 
“New Gauss-Markov” titles in the figure signify that the CODAR return processing algorithms 
described in Section 2-1 were being used.  The no-wind case differences are shown as a function 
of forecast time for the east (u-component, blue solid line) and north (v-component, red solid 
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line) current components.  Where the wind-driven residual is not incorporated, the RMS 
differences start at 9 cm/s at the t=0 forecast and increase, then level off at 12 cm/s for the east 
component and 13 cm/s for the north component at approximately 5 hours forecast time.  The 
dashed blue line (u-component) and dashed red line (v-component) show the corresponding 
RMS difference plots incorporating the wind-driven residual current based on observed wind.  

The reductions in RMS error vs. time plots at the bottom of the figure show that a reduction 1 to 
2 cm/s (20 percent) was realized for the present time analysis, but the reduction dropped off 
rapidly to 1cm/s or less at forecast times of a few hours or more. 

 
Figure 2-2.  The RMS difference (cm/s) between area-averaged MAB CODAR east (u-blue 

lines) and north (v-red lines) components of surface current for August 2004 as a 
function of current forecast period (hrs) using measured wind (dashed lines) and 
no wind forcing (solid lines).  The reductions (∆u, ∆v) in RMS error at the bottom 
of the figure represent the error reduction realized by the use of buoy winds. 

2.3. Use of “forecast” winds derived from NOAA buoy data 

An experiment was performed in which observed winds from NDBC buoy #44025 were 
included as “forecast” winds during the same period in August 2004.  In this test winds from 
times following each present time (i.e. as simulated predictions of future winds) were included in 
the Gauss-Markov estimator.  In making predictions for planning an actual SAR case, these 
“future wind values” would of course be replaced by model predictions.  In a sense, this provided 
a “perfect prediction” of future winds for the time period considered to establish an upper limit 
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of the potential value of including wind forecasts.  At each time step, the “New Gauss-Markov 
Forecast” approach was used to construct an estimate of the surface current based on measured 
buoy winds during the 48 hour period centered on the present time (e.g. t = 0 in Figure 2-3).  As 
before, the basic features of the STPS (Gauss-Markov tidal and residual currents) were included 
in the prediction.  The improvement provided by using present buoy winds relative to the basic 
STPS using only observations (made prior to t=0) is shown by plotting RMS difference as a 
function of forecast time in Figure 2-3 for the August 2004 time period.  The area-averaged east 
(blue) and north (red) RMS velocity component errors are plotted as a function of the forecast 
period (hrs).  The solid lines represent predictions based on measured and forecast winds; dashed 
lines correspond to predictions based only on measured winds.  The results suggest that the use 
of wind forecasts produces a negligible improvement in prediction skill.  The low magnitude and 
variability of the wind during the test period may not have produced a significant response from 
the model because surface currents were not well correlated with local winds during that time.  
Other explanations may be that surface currents are forced by other processes, or that another 
analysis approach to quantifying the wind-driven circulation is called for. 

 
Figure 2-3.  The evolution of the area-averaged RMS difference between the forecast current 

components using the enhanced STPS algorithm with measured wind (dashed lines) 
and with measured and forecast wind (solid lines) in the MAB area.  The reductions 
(∆u, ∆v) in RMS error at the bottom of the figure represent the error reduction 
realized by the use of buoy winds. 
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2.4. Summary of STPS extension efforts 

A series of changes were made to the STPS as it was adapted from the BIS area to the MAB 
area.  The changes fell into two categories: modifications to the processing of the CODAR data 
to enhance data quality prior to use by STPS, and application of new techniques to predict 
surface currents incorporating a wind-driven component based on actual observed and forecast 
winds.  The exercises determined that changes to the processing of CODAR returns had the 
largest influence on the agreement of subsequent CODAR-derived surface current data with 
STPS predictions.  The use of currents derived from the GDOP and percent return filters reduced 
RMS errors by approximately 20 percent.  

The introduction of wind data into the Gauss-Markov estimator as incorporated into the MAB 
STPS algorithm provided a small improvement in the RMS differences between predictions and 
future CODAR data.  The reductions in RMS prediction error varied between 2 cm/s at the one 
hour forecast time to less than 1 cm/s at prediction times of a few hours, or approximately 10 
percent. 

Potential reasons for the minimal contribution of the wind-driven component may be that the low 
magnitude and variability of the wind during the test period may not have produced a significant 
response from the model because surface currents were not well correlated with local winds 
during that time.  Other reasons may be that the statistical approach chosen did not represent the 
effect of wind.  Additional testing and a different conceptual approach are needed, particularly 
for the 0 to 6 hour interval, a time period of significant operational interest to the CG. 

In summary, the greatest improvement in the STPS performance was due to improved CODAR 
data processing than to adding the effect of forecast winds to the STPS.   
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3.  EVALUATION OF PREDICTIVE METHODS IN ESTIMATING 
DRIFTER TRAJECTORIES 

Through this study and previous work, investigators had access to actual SLDMB trajectory 
information in the Mid-Atlantic Bight (MAB) and Block Island Sound (BIS) dating from 
December 2002 through September 2004.  These trajectories were used to evaluate the 
performance of the extended STPS with wind forcing, and their underlying CODAR surface-
current maps with improved processing, and compare the CODAR/STPS performance against 
traditional CG search planning methods for determining surface currents. 

3.1. Mid-Atlantic bight SLDMB deployments 

Figure 3-1 and Figure 3-2 show the trajectories of SLDMBs launched in the MAB study area.  
The thin dark line shows the area for which CODAR coverage was available more than 
90 percent of the time.  The thick lines represent the drifter trajectories.  

 
Figure 3-1.  Drifter trajectories in the MAB study area in July–Sept 2004 (Black dots represent 

the start point for each trajectory). 
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Figure 3-2.  Trajectories in the MAB study area in March–April 2003 (Black dots represent the 

start point for each trajectory). 

 
The drifter trajectories were divided into 24-hour segments, creating approximately 
200 independent sample tracks.  The frequency distribution of separation distances (position 
errors) between drifter location and positions computed using the CODAR current estimates at 3, 
6, 12, and 24 hours is shown in the left column of Figure 3-3.  The second column shows the 
same information with the drifter locations predicted using the STPS currents.                                                        
Measured wind data from NDBC buoy #44025 were used in the STPS predictions to incorporate 
a wind-driven component as described in Section 2.2.  Because the CG currently uses a 
climatological mean current specified at 1-degree intervals to estimate the drift of search targets 
in most of this area, the third column shows the separation distances between the drifter location 
and the positions predicted using the Mariano climatology (Mariano, Ryan, Perkins, Smithers, 
1995).  Finally, the LKP column shows the distribution of separation distances between the 
actual position of the drifter and its initial location (i.e., if we assumed that the object did not 
drift from its initial position over the 24-hour period).  At 3 and 6 hours, the distributions of the 
separations in the left two columns (CODAR and STPS) are slightly more skewed to lower 
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values than the right two columns, indicating that these two approaches are somewhat more 
accurate. 

 
Figure 3-3.  Histograms of the separation between the predicted and actual locations of SLDMBs 

in the MAB study area, shown as the number of endpoints (N) vs separation 
distance (km) at 3, 6, 12, and 24 hours.  From left to right, the predicted positions 
are obtained by integrating observed CODAR velocities, STPS-predicted currents, 
velocities estimated using the Mariano climatology data, and the LKP. 

 



3-4 

Distances corresponding to the 95th percentile of the separation distance distributions at each 
time step are shown in Figure 3-4.  The differences are relatively similar in this case.  At 24 
hours, the difference between the four methods is less than 5 km.  As shown in Figure 3-4, 
CODAR and STPS have slightly smaller separation distances than the Mariano climatology or 
LKP estimates, but the difference is not significant. 

 
Figure 3-4.  The evolution of the 95th  percentile value of separation distance between drifters 

and simulated trajectories in the MAB based on CODAR data (green line), the STPS 
algorithm (blue line), LKP (black line), and Mariano climatology (red line).  

 
To provide a more realistic comparison of the CODAR and STPS predictions with the more 
conventional predictions, data from the MAB area were reprocessed to exclude data outside of 
the 90 percent availability line (i.e., excluding lower percent return CODAR areas).  The results 
are provided in Figure 3-5 and Figure 3-6.  The data are similar to those without screening except 
for CODAR.  The CODAR errors decrease approximately 20 to 25 percent when the lower-
quality data are excluded, and STPS errors decrease by roughly 10 percent.  The outcome 
illustrates the value gained by preprocessing and use of higher quality CODAR returns 
implemented in the MAB processing algorithm, in improving the performance of these 
approaches for predicting drift body motion. 
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Figure 3-5.  Histograms of the separation between the predicted and actual locations of SLDMBs 
in the MAB study area, shown as the number of endpoints (N) vs separation distance 
(km) at 3, 6, 12, and 24 hours.  From left to right, the predicted positions are 
obtained by integrating observed CODAR velocities, STPS-predicted currents, 
velocities estimated using the Mariano climatology, and the LKP.  These results 
were obtained using only drifter trajectories that were always inside the CODAR 90 
percent availability line. 
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Figure 3-6.  The evolution of the 95th percentile separation distance between drifters and 

simulated trajectories in the MAB based on CODAR data (green line), the STPS 
predictions (blue line), LKP (black line), and Mariano climatology (red line).  
These results were obtained using only drifter trajectories that were always 
inside the CODAR 90 percent availability line. 

3.2. Block Island Sound SLDMB deployments 

The four predictive approaches were applied to the BIS for the purpose of comparing their 
performance in a tidally-dominated region.  The SLDMB deployments also included trajectories 
inside the area covered by the BIS CODAR system.  Figure 3-7 shows the locations of the 
release points (red dots) of the drifters and the subsequent tracks (blue).  Two obvious features of 
these trajectories deserve comment. 

• The drifters launched in the northern half of the BIS moved to the east and exit the sound 
between Block Island and the Rhode Island shore.  In contrast, those released in the 
southern half moved almost directly to the south between Montauk and Block Island into 
the Atlantic.  Thus, knowing the initial position and the spatial structure of the circulation 
is critical to knowing where drifters will go. 

• Within BIS, large reversals occur in the trajectories where the tidal currents are strong. 
 
The drifter trajectories were divided into 24-hour segments overlapped by 12 hours, which 
resulted in a total of 140 independent sample tracks within the area monitored by the BIS 
CODAR system.  The modified STPS was used to make 24-hour trajectory predictions to 
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compare with the subsequent SLDMB tracks along with predictions based on actual CODAR 
data (without the MAB pre-processing steps) and the NOAA tidal current forecasts.  Position 
difference from the LKP was used as a reference.  In each case, the observed (SLDMB) and 
predicted (CODAR, STPS, NOAA Tide, and LKP) velocity fields were converted to trajectories 
using simple predictor-corrector integration combined with bi-linear interpolation of point 
velocity data at nearby locations to the locations of the drifters. 

 
Figure 3-7.  Deployment locations of SLDMBs (red dots) and their subsequent trajectories (blue 

lines) in BIS. 

 
The distributions of position errors as represented by separation distances between observed and 
predicted drifter locations are shown at 3, 6, 12, and 24 hour forecast times in Figure 3-8.  
Separation distances between actual SLDMB locations and CODAR predicted locations are 
shown in the left column.  The second column shows the separation distances between actual 
SLDMB locations and STPS predicted locations.  Because the CG currently uses NOAA tidal 
current station information to estimate the drift of search targets in most of this area, the third 
column shows the separation distances between the SLDMB locations and predictions made 
using the NOAA information.  (Note: data from the NOAA tidal station nearest to the position at 
the beginning time segment was applied for the duration of the 24-hour trajectory.)  Finally, to 
evaluate the assumption that an object did not drift from its last known position (LKP), the right 
column shows the separation distances between the actual position of the drifter and its initial 
location estimate (LKP). 
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Figure 3-8.  Histograms of the separation between the predicted and actual locations of SLDMBs 

in the MAB study area, shown as the number of endpoints (N) vs. separation 
distance (km) at 3, 6, 12, and 24 hours.  From left to right, the predicted positions 
are obtained by integrating observed CODAR velocities, STPS-predicted currents, 
velocities estimated using the NOAA tides, and the LKP.   

 
The NOAA tide and LKP separation histograms are more widely distributed, particularly as the 
prediction time increases, indicating that position errors will be larger for these approaches.  The 
CODAR and STPS separation distance distributions show smaller separation distances (position 
errors), particularly within the first 6 hours, indicating that these approaches have higher 
predictive skill.  At 3 and 6 hours, the separation distance is 0 to 2 km with almost all values less 
than 5 km for both the CODAR and STPS distributions.  At 12 and 24 hours, the modal values 
increase to 4 km and the distribution of the STPS separations is obviously wider than that in the 
first column, reflecting the decrease in the predictive skill with increasing forecast time for 
STPS.  
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Figure 3-9 provides another view of the separation by showing the increase in the 95th percentile 
of each distribution in Figure 3-8 as a function of prediction time.  The CODAR analysis 
trajectories and STPS predictions produce nearly equivalent separation distance (position errors) 
between 0 and 5 hours with an approximate RMS separation error of 5 km at 5 hours.  On the 
other hand, the separation based on the NOAA tidal current predictions was approximately 
20 km at 5 hours, a factor of 4 higher.  Of the four methods, the NOAA tidal current predictions 
provided the least accurate estimate of drifter location.  This result is partially due to the distance 
and position of the drifters relative to the nearest NOAA tidal station and because the NOAA 
tidal stations used for estimates were not updated during the drift.  The no-motion drifter 
displacement (LKP) error is lower than the NOAA tides prediction with a separation of 
approximately 7.5 km at 5 hours but is less accurate than the STPS forecast.  Beyond the 5-hour 
prediction time, the STPS prediction diverges from the CODAR-derived positions, and is much 
larger at the 24-hour prediction time.  The separation distance in SLDMB positions associated 
with the use of CODAR data is approximately 16 km after a 24-hour period. 

 
Figure 3-9.  The evolution of the 95th percentile separation distance between drifters and 

simulated trajectories in the BIS based on CODAR data, the STPS algorithm, 
last known position (LKP), and NOAA tidal current predictions. 

3.3. Summary of results 

In both BIS and MAB, the CODAR systems provided the most accurate estimates of the four 
methods selected.  This result validates the usefulness of CODAR, but is tempered somewhat by 
the fact that CODAR is a real-time observation and cannot be used as a predictive tool for these 
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exercises.  In both areas, the STPS produced larger separation distances than the CODAR 
analysis velocities and provided only a modest improvement in prediction accuracy over 
conventional methods.  Use of the Mariano currents (standard CG procedure) in the MAB 
provided a prediction of SAR object drift that was functionally identical to the STPS.  This result 
is reasonable because winds were relatively light over the period of the test.  For the MAB, 
trajectory errors derived from CODAR data improved the skill of the prediction, reducing the 
separation error by 20 to 25 percent when CODAR data outside of the 90 percent availability line 
were not used for trajectory calculations.  In BIS, trajectory predictions based on the NOAA tidal 
current predictions produced the largest prediction errors of any method.  This is caused by the 
spatial variability of tidal currents in that area and because current estimates were used only from 
the closest operational NOAA station to the study area at the start of the period of drift.  The 
signal processing and use of wind data in STPS did not improve or change its predictive skill in 
BIS.  

CODAR therefore represented a modest improvement over the present Mariano current data tool 
in this area.  The use of STPS produced only a minor improvement over those derived from the 
LKP and NOAA tidal current predictions.  The incorporation of the MAB CODAR filtering 
algorithms produced the largest improvement in system accuracy. 



4-1 

4.  OTHER FACTORS AFFECTING USABILITY OF CODAR AND STPS 
FOR SEARCH PLANNING 

This section focused on the characterization of uncertainties in the surface current field using 
CODAR and STPS, and the subsequent incorporation of these parameters into trajectory 
simulations.  Errors in the measurement of velocity at the sampling scale were considered.  
Dispersion due to surface water currents occurring at scales smaller than the sampling scale 
(i.e., turbulence) was also considered.  Methods were developed to quantify the error and 
determine dispersion components of CODAR-derived velocities.  Random walk (RW) and 
random flight (RF) Monte Carlo models were analyzed and compared.  SLDMB trajectories 
were then modeled incorporating CODAR and STPS velocity data using both the RW and RF 
models. 

4.1. Surface current dispersion 

The motion of particles (including SAR drift objects) is caused by processes that vary over a 
wide range of scales.  In SAR problems, for example, processes may be on the scale of the 
continental shelf or down to the scale of the SAR drift object itself.  Because methods are not 
available to solve for motion at all scales simultaneously, it is still common practice (Taylor, 
1921) to describe the velocity of a particle in terms of a mean field component and a turbulent 
component. 

Surface current mapping radars such as CODAR can provide estimates of the mean field velocity 
at temporal scales of 1 hour and spatial scales of approximately 1.5 km and 6 km for standard-
range and long-range systems, respectively.  This radar-derived mean field velocity is subject to 
significant uncertainties and errors, which effectively constitute a separate ‘error’ component of 
the total velocity.  The turbulent component of velocity incorporates velocity fluctuations on all 
scales smaller than the scale of the CODAR-derived mean field velocity.  For a detailed 
description of these three components of the total velocity, see (O'Donnell, Ullman, Edwards, 
Fake, Allen, 2005) and Ullman et al, (2005)) Appendices C and D. 

For reasons of practicality, the ‘error’ component of the total CODAR-derived velocity is 
combined with the turbulent component of the velocity.  This combination is partly motivated by 
the fact that there is no easy way to separate the two components when comparing the radar-
based mean velocity with similar estimates from drifters.  This report will assume that this 
combined error plus the turbulent velocity component can still be described by models of 
turbulence, and it is treated as such in this study. 

The dispersion of an array of drifters is the increase in mean separation of neighboring drifters 
over time due to the effects of turbulence and spatial gradients (shear) in the velocity field.  To 
the first approximation, dispersion is defined in terms of the dispersion coefficient, K, the 
velocity variance, σ2, and the autocorrelation time of the velocity field, τ, according to the 
following equation (Csanady, 1973): 

K = σ2τ . 
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The value of K chosen for a search case has a significant impact on the size of the containment 
area.  As an example, results of a vertical person in the water (PIW) 3-hour drift using the RW 
Monte Carlo method and dispersion coefficients of 5 m2/s (the value originally recommended for 
the operational T&E) and 140 m2/s (Ullman’s estimate based on data from the MAB region) 
were simulated during the operational test and evaluation (T&E).  The results are shown in 
Figure 4-1.  The containment area was 1.8 square nmi when K was 5 m2/s and 34 square nmi 
when K was 140 m2/s.  

 

  
K = 5 m2/s K = 140 m2/s 

Figure 4-1.  Containment areas resulting from different dispersion coefficients. 

 
In practice, dispersion is difficult to measure directly.  Several approaches were taken to quantify 
dispersion in the BIS and the MAB CODAR regions.  The dispersion coefficient was estimated 
directly through analysis of the spread of individual clusters of SLDMBs with time.  The 
dispersion coefficient can also be calculated as the product of the velocity variance and the 
velocity autocorrelation time.  Dispersion coefficients were calculated in this way using variance 
computed for CODAR velocities and variance computed for the differences between CODAR 
and SLDMB velocities.  Dispersion was also estimated retrospectively using the results of Monte 
Carlo simulations of SLDMB trajectories.  These various methods resulted in estimates of the 
dispersion coefficient ranging from approximately 40 m2/s to 700 m2/s as reported in (Spaulding, 
Isaji, Hall, Allen, 2005) Appendix E.  Ullman et al, (2005) used the variance of the difference 
between SLDMB and CODAR velocities (see Appendix B) to produce estimates of K for the 
BIS and the MAB regions that are presented in Table 4-1.  This approach using differences 
between CODAR and SLDMB velocities is considered advantageous conceptually because it 
most closely characterizes the sub-grid scale velocity field and includes the measurement error 
from the CODAR system. 
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Table 4-1.  Summary of Dispersion Coefficients K for BIS and MAB regions calculated using 
the variance of the difference between SLDMB and CODAR velocities in the BIS 
and the MAB regions. 

Region K−East-West (m2/s) K−North-South (m2/s) K−Average (m2/s) 
BIS 110 80 90 

MAB 120 160 140 
 

4.2. Monte Carlo characterization of dispersion 

The random walk characterization of surface current dispersion is based on the assumption that 
the non-tidal residual component of the surface current vector is randomly distributed.  This 
process adds random noise to the surface current vector fields to reproduce the effects of 
dispersion.  This method is easily implemented and has seen frequent use in past Monte Carlo 
search planning tools.  In the Random Flight characterization of surface currents, dispersion is 
modeled by drawing values that are random, yet are partially dependent on the previous value of 
the surface current vector.  Each new vector calculated by the RF approach is therefore partially 
correlated with the previous value.  As new vectors are calculated on succeeding time steps, 
positions at later time steps become less dependent on earlier values.  The system “decorrelates”, 
approximately at an exponential rate with the number of time steps.  The characteristic time 
corresponding to that exponential decay rate, is referred to as the “e-folding” time or 
autocorrelation time. 

In practice, the RW model treats dispersion through the dispersion coefficient, K.  The RW 
approach handles dispersion (S2), or the mean squared separation of particles, as linear growth 
with time (t) at the rate S2 = 2Kt.  With the RF model, for a given value of dispersion, the mean 
squared particle separation grows at a slower rate of time, S2 = 2Kt - 2KT(1-e-t/T), where T is the 
characteristic autocorrelation time of the velocity field (Spaulding et al, 2005).  For a given K, 
the dispersion of a particle field predicted by the RW approach will be larger than one predicted 
by the RF approach.  For detailed methodologies of these models, also see Griffa (1996) or 
Berloff and McWilliams (2002).   

A comparison of analytical solutions for the RW and RF models shows that for a given value 
of K, the RW model results in more dispersion (and a larger predicted search area) than the RF 
model (Figure 4-2).  This difference is particularly pronounced at times shorter than the velocity 
autocorrelation time (T=3 hr).  During this period, the size of the search area predicted by the 
RW model increases more rapidly than the size predicted by the RF model.  At times greater than 
the velocity autocorrelation time, the search areas predicted by the two models increase at the 
same rate.   
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Figure 4-2.  Analytical solution of predicted search areas (separation) as a function of 

time for the RW and RF models.  The difference in search areas predicted by 
the two models is small relative to the overall range of potential search areas 
due to uncertainty in K.  For example, RW and RF separation initially 
increases, but levels off at a constant value for a given K. 

 
While the RF approach is conceptually better, the difference between the search areas obtained 
from RW and RF models is small relative to the difference resulting from uncertainty in 
dispersion (K).  The value selected for K emerges as the critical factor in defining the size and 
growth of the search area in a SAR case.  Figure 4-2 therefore underscores the significance of 
having a representative value of K for SAR planning.  If K is overestimated, the search area will 
be too large, resulting in a waste of search effort.  If K is underestimated, the search area will be 
too small, increasing the probability that the search object will be outside of the search area and 
increasing the potential that the search object will not be found. 

4.3. Monte Carlo simulation results 

Simulations were conducted to evaluate the ability of the two Monte Carlo models to predict 
search areas using CODAR and STPS velocity data in conjunction with the dispersion 
parameters obtained from this study (using the East-West and North-South dispersion 
coefficients for BIS and MAB in Table 4-1).  Search areas were predicted for the individual 
24-hour BIS SLDMB trajectories.  A total of 159 independent drifter trajectories were modeled 
in the MAB; 72 drifter trajectories were modeled in the BIS.  Figure 4-3 shows an example of an 
actual SLDMB trajectory with a predicted search area derived from pseudo-drifter trajectories 
derived from a RF simulation.  The 95 percent containment region (predicted search area) was 
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estimated by computing a two-dimensional histogram of the pseudo-drifter locations, sorting the 
spatial bins based on the number of pseudo-drifters contained, and then summing over the bins 
until 95 percent of the total was obtained.  This approach allowed the containment area to be 
more closely tailored to the distribution of the modeled pseudo-drifters than a simple circular 
area would be.  The performance of the RW and RF approaches was compared by calculating the 
percent of cases when the actual SLDMB was located in the predicted search area between 1 and 
24 hours.  If the SLDMB was located within the predicted search area (defined as the 95 percent 
containment region), the prediction was considered a success.   

 
Figure 4-3.  Illustration showing actual 24 hr SLDMB track (red) and predicted drifter 

trajectory (green).  Small blue dots represent the positions of the individual 
particles used in a series of Random Flight Monte Carlo simulations.  The 
95 percent containment region is shown as gray-shaded rectangles. 

 
Using the drifter trajectories described above and corresponding CODAR data, Ullman et al, 
(2005) calculated dispersion coefficients for RF and RW trajectory simulations in BIS and MAB.  
The dispersion coefficients were based on the variance and autocorrelation times of the nontidal 
velocity plus measurement error time series.  Ullman et al, (2005) found that the area containing 
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95 percent of SLDMB trajectories predicted by the RF approach contained drifters with a 
probability of about 90 percent.  On the other hand, a much smaller 95 percent containment area 
was predicted by the RW approach that contained the drifter in only 60 percent to 80 percent of 
the cases.  The disparity was attributed to an underestimate of the autocorrelation time estimate 
used for K in the RW calculations.  When K was changed to a value consistent with the one used 
for the RF simulations, the two approaches provided consistent results (Figure 4-4), particularly 
at times greater than the velocity autocorrelation time.  This behavior was demonstrated in the 
analytic solutions for the two models (Figure 4-2). 
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Figure 4-4.  A comparison of RW and RF Monte Carlo simulation results for the MAB region.  

For each hourly prediction time, the percent of cases where the actual drifter location 
at that time fell within the estimated 95 percent confidence region is plotted. 

4.4. Discussion of Monte Carlo modeling results 

The Monte Carlo exercises were somewhat inconclusive in that there was some disagreement 
over the relative merits of the Random Walk and Random Flight approaches.  For short Search 
Action Plan drifts (i.e., on the order of the autocorrelation time), the RW model produced a 
larger predicted search area than the RF model and consequently was more likely to contain the 
target.  As drift times lengthen, the relative difference in predicted search area between the two 
models decreased, and the performance of the two models was approximately equivalent. 
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The overarching issue, however, appears to be that the value selected for K exerts a major 
influence on the outcome of the initial search area that would be estimated.  Values of K between 
40 to 700 m2/s produced separation estimates from 7 to 120 square kilometers in 24 hours, based 
upon Spaulding et al, (2005) (Appendix E), equation 4 (RW Separation area = 2 x K x time).  
Using the difference between SLDMB and CODAR velocities in the BIS region, K was 
estimated to be 90 m2/s.  In the MAB region, K was estimated to be 140 m2/s.  Thus, the 
separation area after 24 hours of drift for the BIS area is expected to be 16 square kilometers and 
24 square kilometers for the MAB region. 

The most practical ways to estimate K are determining the dispersion parameters (i.e., velocity 
variance and autocorrelation time) from CODAR velocity data, SLDMB velocity data, or from 
the difference between CODAR and SLDMB velocities.  Using the difference between CODAR 
and SLDMB velocities most closely characterizes the sub-grid scale velocity field and includes 
the measurement error from the CODAR system.  While analyzing the dispersion of the 
individual SLDMB clusters is the most direct way to measure dispersion, this process is 
problematic in that large numbers of SLDMBs (i.e., on the order of 10) need to be deployed and 
allowed to drift for a significant period of time in order for the resulting statistics to be truly 
robust.  Completing this task for the CG’s area of responsibility would be a large task. 

Dispersion parameters vary both spatially and temporally, and the degree to which dispersion 
parameters can be usefully differentiated depends on both the spatial and temporal density of 
data used to estimate them.  Improved estimates of dispersion, including the possibility of some 
spatial refinement, can be achieved incrementally through additional SLDMB deployments.  A 
system could be established to catalog SLDMB and CODAR data for individual CODAR 
regions.  By maintaining a database with all SLDMB trajectories through a given CODAR 
region, along with concurrent CODAR velocities, estimates could be refined as necessary in the 
future.  Calculations could be performed on a periodic basis (e.g., annually).  As new data are 
added to the calculations, the accuracy of the estimates of K would approach their representative 
mean values over a period of several years.  



4-8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(This page intentionally left blank.) 
 



5-1 

5.  EXTENSION OF THE PROTOTYPE SAROPS ENVIRONMENTAL 
DATA RETRIEVAL SUBSYSTEM TO EXTRACT STANDARD CODAR 
DATA FIELDS AND THEIR ASSOCIATED STPS FORECASTS 

5.1. Prototype SAROPS EDS 

SAROPS is the new CG SAR system currently being developed by Northrop Grumman, Applied 
Science Associates (ASA), and Metron.  SAROPS contains three main components:  
ArcGIS/Commercial Joint Mapping Tool Kit (CJMTK)-based graphical user interface (GUI), 
Environmental Data Server (EDS), and Simulator engine that performs the particle motion and 
search optimization.   

At the time of this project, SAROPS was still under development; the alpha version of SAROPS 
was delivered in March 2005, and final release is not expected until 2006.  As a replacement for 
the SAROPS application, a modified version of SARMAP, a commercially available SAR 
application used by international CG agencies, was substituted.  SARMAP includes geographic 
information system (GIS)-based tools for developing SAR cases, gathering and entering 
environmental data, running International Aeronautical and Maritime Search and Rescue 
(IAMSAR) or Monte Carlo simulations, visualizing SAR results, and adding Search and Rescue 
Unit (SRU) patterns. 

Even though SAROPS was not available, a preliminary version of the SAROPS EDS was 
available for evaluation.  SARMAP was customized to connect to the EDS to access 
environmental data.  This connection enabled evaluation of the SAROPS client communications 
with the EDS by using the modified SARMAP software as a proxy for SAROPS. 

Primary data served by the EDS are current and wind data.  Additional environmental parameters 
are expected to be available in the future.  Environmental data are based on the SAR case 
information.  SAROPS determines the area of interest (AOI) and time of interest before making a 
request to the EDS for data (currents and winds) that meet the AOI and time of interest. 

The initial developmental prototype EDS version retrieved, archived, and distributed data from 
NOAA PORTS sites, NOAA CO-OPS, selected NDBC stations, and selected New England 
USGS river gauges.  As part of the continuing SAROPS development effort, the EDS was 
modified to add CODAR and SLDMB data.  The EDS is made up of two main components:  a 
catalog server and an EDS Web server. 

5.1.1. Catalog server 

The catalog component of the EDS contains the data sources available to the EDS.  Both 
HyperText transfer protocol (HTTP) and file transfer protocol (FTP) were required to retrieve 
information from the data sources.  The significant information contained in the catalog are: 

• Geographic extent of the data source, 
• Time window of data available for a data source, and 
• Structure and format of the source files. 
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On a routine basis, based on source data update frequency, the catalog server retrieves data from 
different sources and makes these data available to the SAROPS user.  As new data are collected 
and stored, the catalog is updated to reflect the most recent “time-stamp” of available data.  
Archives are kept so that SAROPS users can retrieve up to six months of historical data for case 
reconstruction. 

Environmental data are highly heterogeneous; data providers supply their data in a variety of 
formats.  In some cases, the catalog server converts the incoming data to make access and 
archiving simpler and to provide compatibility with common units, coordinates, etc. 

The modified EDS collects and distribute four data products: 

• UCONN CODAR and STPS data 
The EDS catalog retrieved the BIS CODAR and STPS files on an hourly basis from the 
UCONN server using FTP and stored files on the EDS. 

• Rutgers CODAR and STPS data 
The EDS catalog retrieved the MAB CODAR files on an hourly basis from the Rutgers 
server using FTP and stored files on the EDS.  The MAB STPS files were retrieved on an 
hourly basis from the UCONN server-using FTP, and files were stored on the EDS. 

• Selected northeast NDBC wind station data 
The catalog stored uniform resource locator (URL) information for selected NDBC 
stations (Table 5-1) and collected the data using HTTP on an hourly basis, parsed the 
HyperText markup language (HTML) data, and appended data for each station into a 
delimited text file. 

 
Table 5-1.  NDBC stations accessed by prototype EDS. 

NDBC Station List 
 44004 – HOTEL 
 44005 – GULF OF MAINE 
 44007 – PORTLAND, ME 
 44008 – NANTUCKET 
 44009 – DELAWARE BAY 
 44011 – George’s Bank 
 44013 – BOSTON, MA 
 44017 – Montauk Point, NY 
 44018 – SE Cape Cod 
 44025 – LONG ISLAND 
 44027 – Jonesport, ME 
 ABAN6 – Alexandria Bay, NY 
 ALSN6 – Ambrose Light, NY 
 BUZM3 – Buzzard’s Bay, MA 
 IOSN3 – Isle of Shoals, NH 
 MDRM1 – Mt Desert Rock, ME 
 MISM1 – Matinicus Rock, ME 
 SUPN6 – Superior Shoals, NY 
 THIN6 – Thousand I Bridge, NY 
 TPLM2 – Thomas Point, MD 

 
• SLDMB tracks (from Operations System Center (OSC) Martinsburg). 

The catalog retrieved the latest SLDMB tracks from an American Standard Code for 
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Information Exchange (ASCII) comma-delimited text file stored on an FTP site at 
OSC Martinsburg. 

 
The EDS version implemented for this project is the first draft (alpha) of the EDS that will be 
installed for the SAROPS project.  Evaluation of the EDS shows that the use of Network 
Common Data Form (NetCDF) as a data transport format is quite efficient and also allows the 
EDS to transition to use of Open-source Project for a Network Data Access Protocol 
(OPeNDAP) in the future.  There are many issues involved in the long-term evolution and 
improvement of the EDS including: 

• Server side filtering (spatial and temporal) based on user data requests; 
• Server side aggregation to combine data across space and time; 
• Server side quality assurance/quality control (QA/QC) processes; and 
• Server side data blending, objective analysis, and data assimilation techniques. 

5.1.2. EDS Web Services 

The EDS Web services (.NET based) wait for requests from the SAROPS client.  The requests 
come in eXtensible Markup Language (XML) format through Simple Object Access Protocol 
(SOAP).  When a request is received for meteorological and oceanographic data for a particular 
area of interest (AOI) and time of interest, the Web service processes the appropriate data from 
the catalog and returns data to the SAR client.  A schematic of this process is included in Figure 
5-1.  The modified EDS Web services manage the following:  CODAR/STPS, NDBC winds, and 
SLDMB data.   
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    Figure 5-1.  Schematic of SARMAP (SAROPS) clients connecting to EDS for environmental 

data needs. 



5-4 

5.2. CODAR/STPS 

A user requesting water current data from the EDS can select from one of three choices as shown 
in Figure 5-2. 

• CODAR 
This process gives the user the “best” available data by combining the latest available 
CODAR (observation) data with STPS data for a forecast period.  Although these data 
are uniform, the operational test and evaluation (T&E) users noted that this solution did 
not allow them to know whether a particular time step was represented by CODAR 
(actual observation) or STPS (forecast).  As a result, the users were uncertain as to how 
much confidence to put in the results. 

• CODAR RAW 
This process gives the user only CODAR data and does not fill any gaps with STPS or 
provide STPS forecast data. 

• STPS 
This process gives the user only STPS data; no actual CODAR observation data are used. 

 

 
Figure 5-2.  Example SARMAP Graphical User Interface (GUI) connecting to EDS for user 

selection of environmental data. 

5.3. NDBC winds 

In response to a user request for wind data, the EDS provides a list of NDBC wind stations in the 
region (Figure 5-3).  The user selects a wind station, and the wind time series for a SAR case is 
automatically loaded from the NDBC data. 
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Figure 5-3.  Example SARMAP Graphical User Interface (GUI) connecting to the EDS for user 

selection of NDBC wind data. 
 
The NDBC data are stored on the EDS as Coastmap Text Format (CTF) files, are parsed for the 
time of interest, and then returned to the client as a binary wind file (.WNE).  The CTF file 
format is a flexible space-delimited test format useful for storing time series data (e.g., wind 
speed and direction, tide height, water temperature) for a single geographic location.  Metadata 
are included in the file header, and all data at a given time are listed on single lines with a date 
and time stamp. 

5.4. SLDMB data 

In response to a user request for SLDMB data, the EDS processes the ASCII file containing all 
of the SLDMB locations in near real time and returns an Environmental Systems Research 
Institute, Inc. (ESRI) shape (SHP) file containing the buoy tracks for the time of interest.  This 
SHP file is then displayed on the SARMAP chart/map. 

5.5. Conclusions on extension of the prototype SAROPS environmental data 
retrieval subsystem 

This task demonstrated that it will be possible for the SAROPS EDS to collect and distribute 
CODAR current data and STPS current predictions from UCONN and Rutgers, wind 
observations from NDBC buoy sites, and SLDMB data from OSC Martinsburg.  It will also be 
possible for remote users to request and download these data in near real-time for use in Search 
Action Plans (SAPs). 
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6.  OPERATIONAL TEST AND EVALUATION 

CODAR and STPS forecasts offer greater temporal and spatial resolution than those used in 
C2PC/CASP/joint automated worksheets (JAWS) software and may be useful in developing 
SAPs that confine searches to smaller areas and increase the probability of success (POS). 

During the operational T&E, controllers had the opportunity to compare SAP data developed 
from CODAR/STPS current data with comparable data from C2PC/JAWS.  They also had 
opportunities to provide suggestions for improvements to CODAR/STPS products and the 
software that accessed these products. 

The two objectives of the 30-day operational T&E were: 

1) Validate the utility of using near-real-time CODAR and STPS forecast data interpolated to a 
small geographic area to develop a search action plan, and 

2) Assess the level of confidence that CG operations personnel (i.e., controllers) have in using 
CODAR/STPS data to develop a search action plan. 

6.1. Test description 

CG Group Moriches (GRUMOR) hosted the operational T&E.  Operations Center (OPCEN) 
controllers were trained on the use of the modified SARMAP software and its wind and data 
retrieval functions to access the EDS where CODAR/STPS data are posted.  All Group 
controllers participated during the 30-day evaluation period by accessing CODAR/STPS data to 
execute simulated test cases, complete data forms, and share their comments and suggestions 
during interviews with the test observer. 

Pretest training was provided from 20-31 October 2004 on an ad hoc basis at times convenient to 
the controllers.  Each controller received approximately four hours of one-on-one instruction 
during the initial week of training.  During the first week of the operational T&E, additional 
follow-on training was conducted to ensure that the controllers were using the software correctly, 
had no questions, and understood their roles during the test period. 

The operational T&E was conducted from 1-29 November 2004.  During this period, four 
separate predefined six-hour observation/interview sessions were conducted by a test 
observer/data collector. 

During the operational T&E, the following three SLDMBs were deployed as illustrated in 
Figure 6-1 to provide simulated zero-leeway search objects. 

1) #38968 on 27 October 2004 at 041° 07.00′ N, 071° 42.00′ W. 

2) #38708 on 3 November 2004 at 040° 37.90′ N, 072° 28.90′ W. 

3) #39001 on 18 November 2004 at 040° 26.23′ N, 073° 18.18′ W. 



6-2 

 

 
Figure 6-1.  Three SLDMBs deployed as targets. 

 
SLDMB #38968 stayed in the BIS CODAR region from 27–31 October, drifted south then east 
during a period of high wind, and continued southwest until it entered the MAB region on 
15 November.  SLDMB #38968 then remained in the MAB region for the duration of the test.  
SLDMB #38708 remained on the northeast edge of the MAB region from 3–5 November, then 
drifted east during a period of high wind, continued southeast until it re-entered the MAB region 
on 14 November, and then remained in the MAB region for the duration of the test.  
SLDMB #39001 remained on the northern border of the MAB region from its deployment on 
18 November throughout the operational T&E period. 

GRUMOR OPCEN was contacted once per shift and supplied with simulated case data that 
could be used to exercise the modified SARMAP software and the C2PC/JAWS software.  The 
data were developed from the SLDMB data and specified the target, the Greenwich Mean Time 
(GMT) of the LKP to be used, the latitude/longitude of the LKP, and the length of time of the 
drift for the test case. 

All watchstanders were asked to run the simulated case twice, once using modified SARMAP 
and once using C2PC/JAWS.  They were requested to archive all computer-generated files 
required by the modified SARMAP software so that the cases could be reconstructed following 
the test, and to save case summaries in text file format from both the C2PC/JAWS and the 
modified SARMAP software.  After running a simulated SAR case, and waiting for the SLDMB 
trajectory for the time period of interest to be completed, the controller could access the SLDMB 
data to determine the accuracy of the modeled containment area. 
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In addition, controllers were also asked to use SARMAP to develop a search action plan for any 
actual offshore SAR cases that developed during their watch.  These cases could be run 
whenever it was convenient.  As it turned out, there were no cases appropriate to this purpose 
during the operational T&E period. 

6.2. Controller feedback 

In general, the GRUMOR controllers were positive and enthusiastic about accessing 
CODAR/STPS data using the modified SARMAP software.  Collected feedback is presented in 
Table 6-1. 

Table 6-1.  Controller feedback. 
Feedback 

Applicability Feedback 
Modified SARMAP Simple to use. 

Requires fewer clicks of the mouse; clickable functions save time. 
There are fewer data to input. 

CODAR/STPS data Not appropriate for surf-zone SAR cases. 
MAB and BIS regions do not provide sufficient coverage for the GRUMOR area 
of responsibility (AOR). 
CODAR data encompassed the target intermittently because the size and shape 
of the CODAR coverage area varied with time. 
It is impossible to tell if the displayed current data are from CODAR or from 
STPS. 

Wind data When predicted wind is applied to STPS forecast current data, it is also 
inappropriately applied to CODAR currents. 

Current data Cannot mix CODAR analysis with tidal predictions or datum marker buoy (DMB) 
data with STPS forecasts. 

Search area results The SARMAP containment area is small compared with the C2PC/JAWS Total 
Probable Error (TPE). 
The target was not always contained in the containment area. 

Display The ability to view the object drift on the map and display the surrounding 
current vectors are good features. 

Modified 
SARMAP/EDS 
interaction 

When the incident site is outside of a CODAR analysis coverage area, the 
software should let the user know that the data may not be appropriate.  
Modified SARMAP uses the four nearest vectors (regardless of how far away 
they are) to define the current field. 

6.3. SAROPS and EDS interaction 

Decision automation was an item of particular interest.  The controllers recommend that the SAP 
software should suggest an NDBC station, a CODAR analysis area, and parameter values (such 
as dispersion, safety, and drift) based on the incident location to be used as input to the SAP 
processing.  At the same time, they pointed out that C2PC/JAWS currently allows them to select 
and view the NDBC buoy to ensure that it is operational and that the data from the buoy are in 
the expected range before the data are imported to the SAR software. 
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6.4. Test case comparisons 

6.4.1. STPS forecast versus CODAR analysis 

The procedures described in Section 6.1 yielded 47 test cases for evaluation.  All test cases were 
later reviewed to compare separation distances to the SLDMB drifter when the different models 
were used and to associate the quality of the modified SARMAP results with the proximity to 
valid CODAR/STPS data.  Watchstander workloads during the tests precluded an accurate 
comparison of the two models.  Time expended accessing the SLDMB data, developing case 
parameters, reporting the case to the OPCEN, and executing the case at an opportune time often 
caused cases to be run later in or after the STPS prediction period.  Once the prediction time 
became a CODAR observation, STPS values for that time were overwritten as CODAR data and 
a new set of STPS values were created.  When this occurred, these cases were based only on 
CODAR data and not on any STPS predictions, preventing an accurate comparison of the two 
approaches.  

Some cases were based on time periods when the target SLDMB was not in the CODAR/STPS 
data coverage area.  For most of the cases, the target SLDMB was in the area, but the CODAR 
data coverage area only intermittently included it.  This was because returns measured from the 
HF radar sensors propagate in the atmosphere inconsistently, especially at night and cause the 
reported current field size to vary by the hour.  The STPS forecast data, based on averaged 
CODAR data, has a larger area of consistent coverage. 

6.4.2. CODAR/STPS versus C2PC/JAWS comparisons inside the CODAR/STPS coverage 
area 

Eleven simulated SAR cases were completely inside the CODAR analysis/STPS forecast area.  
The International Aeronautical and Maritime Search and Rescue (IAMSAR) model was used to 
match the C2PC/JAWS model currently used at GRUMOR.  Note:  One case is included twice 
(once for STPS, and once for CODAR).  Modified SARMAP predictions from these cases were 
compared with C2PC/JAWS predictions.  Results are shown in Figure 6-2.  Statistical 
parameters are provided in Table 6-2.  The average ranges (separation distances) from the 
centers of the left and right IAMSAR-modeled position estimates to the SLDMB positions at the 
ends of the drifts was 1.3 nmi when the modified SARMAP with CODAR/STPS data were used 
compared with 2.8 nmi when C2PC/JAWS was used.  More variability was also evident using 
the C2PC/JAWS model: 11.0 nmi compared with 1.4 nmi (SARMAP value). 
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Figure 6-2.  Comparison of CODAR/STPS and C2PC/JAWS results inside the CODAR/STPS 

coverage area. 

 
           Table 6-2.  Statistical comparison of CODAR/STPS versus C2PC/JAWS inside the 

CODAR/STPS coverage area. 
Model Mean Range to Drifter (nmi) Standard Deviation (nmi) 

CODAR/STPS 1.3 1.4 
C2PC/JAWS 2.8 11.0 

 

6.4.3. CODAR/STPS versus C2PC/JAWS comparisons outside the CODAR/STPS 
coverage area 

Fourteen simulated SAR cases were completely outside the CODAR analysis/STPS forecast 
area.  The IAMSAR model was used to match the C2PC/JAWS model currently used at 
GRUMOR.  When the drifter was outside the CODAR/STPS coverage area, the modified 
SARMAP software extrapolated from the nearest available CODAR/STPS data.  Trajectories 
predicted outside of the CODAR/STPS coverage are expected to be less accurate because the 
current field is not spatially uniform and because the CODAR data used in the extrapolation 
most likely had higher associated uncertainties as they are on the fringe of the coverage area.  
Modified SARMAP predictions from these cases were compared with C2PC/JAWS predictions.  
Results are shown in Figure 6-3.  Statistical parameters are provided in Table 6-3.  The average 
range from the centers of the left and right IAMSAR-modeled position estimates to the SLDMB 
positions at the ends of the drifts was 2.4 nmi when the modified SARMAP with CODAR/STPS 
data were used compared with 2.6 nmi when C2PC/JAWS was used.  More variability was 
evident using the CODAR/STPS data, 2.8 nmi compared with 0.7 nmi.   
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Figure 6-3.  Comparison of CODAR/STPS and C2PC/JAWS results outside the CODAR/STPS 

coverage area. 

 
 Table 6-3.  Statistical comparison of CODAR/STPS versus C2PC/JAWS outside the 

CODAR/STPS coverage area. 
Model Mean Range to Drifter (nmi) Standard Deviation (nmi) 

CODAR/STPS 2.4 2.8 
C2PC/JAWS 2.6 0.7 

6.5. Summary of the CODAR/STPS operational T&E 

• The BIS and the MAB CODAR sites were fully functional during the entire operational 
T&E period.  This demonstrated the operational reliability of these automated processing 
systems. 

• CG GRUMOR controllers demonstrated interest and confidence in using CODAR 
surface currents measured in near real time and STPS estimated currents developed from 
CODAR data to develop SAPs. 

• Use of the modified SARMAP to interface with the EDS raised issues that should be 
considered in the development of SAROPS, e.g., decision automation. 

• On the basis of a very limited data set, the modified SARMAP model using CODAR and 
STPS data predicted target drift of simulated PIW targets more accurately than the 
C2PC/JAWS model.  Caution should be used when the drifter is outside the 
CODAR/STPS coverage area as the results may be based on incorrect current data both 
because the current may be very different at the drift location than it is within the 
CODAR/STPS coverage area and also because the extrapolated data probably have 
higher associated uncertainties than more included data.   
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7.  SUMMARY AND RECOMMENDATIONS 

7.1. STPS modifications 

The STPS, which had been developed for the BIS where surface currents were considered to be 
tidally dominated, was adapted to the MAB, where local winds were considered to dominate 
circulation.  Several enhancements were made to the STPS.  The calculations were modified to 
factor in the localized wind-current relationships at each grid point, instead of a region-wide 
average.  The cross-correlations between the east and north velocity components of current at 
each grid point were factored in to account for the Coriolis effect.  Measured wind data from a 
moored buoy in the vicinity of the CODAR coverage area were used to calculate the covariance 
function with the CODAR data.  Winds were incorporated in two ways.  First, wind observations 
prior to each time step were used to predict future surface currents.  Next, actual wind 
observations for times after the current time were used as “predicted” winds to evaluate the 
extent to which including the wind-driven component would improve performance. 

Of these enhancements, the addition of the wind contributed to a marginal improvement in the 
predictive skill of the STPS, when surface current fields predicted by STPS were compared to 
subsequent CODAR measurements.  The incorporation of winds into STPS produced reductions 
in RMS prediction error ranging from 2 cm/s at the one hour forecast time to less than 1 cm/s at 
prediction times of a few hours, or approximately 10 percent.  The weight of this conclusion is 
tempered by the fact that winds were relatively light during the study period.  The impact of the 
wind on the prediction skill may be underestimated in this test, and further study may be 
warranted using data from time periods when winds are stronger or show a large change in 
direction (e.g. during frontal passages) and have more of an impact on surface flow. 

7.2. STPS and CODAR prediction of SLDMB trajectories 

Surface currents fields derived from the modified STPS and the CODAR data were used to 
generate pseudo-trajectories in MAB and BIS.  The small-scale random component of motion 
was simulated using Monte-Carlo RW and RF models.  Trajectories predicted using the RW and 
RF models were compared against actual SLDMB trajectories.  The method used to calculate 
dispersion was found to affect the size and skill of the RW and RF approaches relative to the 
SLDMB trajectories.  The magnitude of the dispersion coefficient used had a principal effect on 
the search area size and the success of the RW versus RF models.   

A modification not envisioned during the planning of this project was to incorporate processing 
features used in the MAB CODAR processing algorithm.  This modification to STPS included 
the incorporation of Geometric Information System (GDOP) and percentage return filtering, 
along with other modifications.  The incorporation of the MAB processing algorithm produced 
the most significant improvement in the skill of STPS, reducing the RMS error of the STPS 
predictions by approximately 20 percent.  The quality of the returns is related to the geometry of 
the transmitter arrays and the orientation of transmitters relative to the predominant directions of 
surface current flow.  These results may indicate that future efforts to improve the usability of 
this technology should also examine signal processing and siting issues.  In summary, the 
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greatest improvement to the usability of the CODAR system resulted from an improvement to 
the processing of CODAR data rather than from adding the effect of forecast winds to the STPS.   

The exercise showed that CODAR is better at hindcasting drifter motion in these areas relative to 
the methods currently in use.  The most significant improvements in CODAR skill resulted from 
CODAR data processing and filtering steps.  Further improvements in accuracy may be realized 
in improved processing of returns and spatial configuration of CODAR networks.  The time 
series analysis techniques employed in this study produced smaller and less consistent 
improvements.  Modifications to the time series analysis approach used by STPS may also be 
beneficial.  

Future improvements to the predictive performance of both methods will also require more 
accurate estimates of the dispersion coefficients and correlation time scale.  As SLDMBs are 
deployed in a region, current velocity data could be saved and utilized, in conjunction with 
CODAR current velocity data, to improve dispersion parameter estimates in the region. 

7.3. Factors affecting usability of HF radar products 

A Monte-Carlo simulation task was undertaken to focus on improving the characterization of 
uncertainties in the CODAR and STPS surface current fields.  Random walk (RW) and random 
flight (RF) Monte Carlo models were used to simulate CODAR/STPS error and dispersion due to 
turbulence in the surface current field.  The RW and RF models were used to model SLDMB 
trajectories in the MAB and BIS.  Dispersion coefficients were computed using variance of 
CODAR field velocities and from differences between CODAR and SLDMB velocities.  
Dispersion was estimated retrospectively using the results of Monte Carlo simulations of 
SLDMB trajectories.  These various methods resulted in estimates of the dispersion coefficient 
ranging from 40 m2/s to 700 m2/s. 

The differences between search areas obtained from RW and RF models was found to be minor 
relative to the differences in search area sizes resulting from uncertainty in dispersion (K).  The 
value selected for the dispersion coefficient (K) emerges as the critical factor in defining the size 
and growth of the search area in a SAR case, and subsequently the usefulness of the CODAR and 
STPS products. 

7.4. Operational demonstration of SAROPS 

A preliminary version of SAROPS EDS was used to collect CODAR current data and STPS 
current predictions from UCONN and Rutgers, wind observations from NDBC buoy sites, and 
SLDMB data from OSC Martinsburg.  This initial test of the retrieval system concluded that 
remote users will be able to request and download these data in near-real time for use in Search 
Area Plans (SAPs).  The following issues, however, need to be considered for operational use. 

• The SAR operators possessed an understanding of the marine environment and want 
more information on the data that they use for SAR cases.  They need information on the 
quality and reliability of the environmental data that they use. 
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• The user could manually select data sources available from the EDS, but the system 
should automatically recommend data sources and parameters such as regional 
dispersion/turbulence based on the AOI. 

 
A 30-day evaluation operational test and evaluation was then conducted was at CG Group 
Moriches (GRUMOR).  SLDMBs deployed during this period were used as search targets. 
Trajectory predictions were made using STPS and CODAR.  Both the BIS and MAB systems 
were fully functional during the T&E period.  Operators expressed interest and confidence in the 
CODAR/STPS predictions.  When SLDMB trajectories were inside the CODAR/STPS coverage 
area, the mean value and variability of SLDMB-prediction errors using CODAR/STPS were 
measurably lower than those from C2PC/JAWS.  When the drifter was outside the 
CODAR/STPS coverage area, the mean errors were comparable, although the variability of 
SLDMB-prediction errors obtained from CODAR/STPS were lower.  In spite of this result, 
caution is recommended when using data collected outside of the coverage area.  

Significant issues that emerged were: 

• Use of the modified SARMAP to interface with the EDS raised issues that should be 
considered in the development of SAROPS, e.g., decision automation. 

• The lack of near coastal CODAR coverage was a concern for operators.  Future versions 
of the EDS will need to blend data sources such as CODAR with other data sources to 
provide complete data coverage for a SAR case. 

 
The demonstration project had no method to assimilate drift data from the SLDMB tracks into 
SARMAP.  The tracks could be visualized, but the forecast (and hindcast) solutions did not 
exploit the SLDMB data.  A system could be established to catalog SLDMB and CODAR data 
for individual CODAR regions.  Simply maintaining a database with all SLDMB trajectories 
through a given CODAR region along with concurrent CODAR velocities will allow better 
estimates of prediction error and dispersion coefficients for a specific region.  The necessary 
calculations could be performed on a regular basis (e.g., annually or seasonally).   

7.5. Recommendations for the U.S. Coast Guard 

CODAR and STPS are maturing technologies that have demonstrated the ability to improve CG 
operational planning.  Presently however, CODAR and STPS are not ready for operational use in 
SAROPS.  The following recommendations are provided to make them viable for operational use 
in SAROPS. 

1) Through Oceans.US, the CG should  
a. Encourage initiatives to improve the accuracy and coverage of HF radar arrays,  
b. Encourage development of enhancements to STPS in HF radar coverage regions. 
c. Partner with the HF radar community to ensure that the CG requirements are 

recognized. 
 

2) In the SAROPS developments process, G-OPR should include methodologies in the EDS to 
fill the gaps where no or invalid surface current data exist.  This applies to the use of model 
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data as well as HF radar data.  In areas where there is no HF radar coverage, alternative 
current estimates, such as historical files or datum marker buoy (DMB) data, should be 
available. 

3) In conjunction with the Operations Systems Center, G-OPR should develop an archive to 
store SLDMB data and periodically calculate and store regionally representative dispersion 
coefficients from SLDMB trajectories.  Archived SLDMB data could also be matched with 
seasonal and environmental conditions to provide better historical current estimates in areas 
where CODAR/STPS is not available. 

4) G-OPR should support further research on the impact of forecast wind change on STPS 
current estimates. 

7.6. CODAR/HF radar community specific recommendations 

The following recommendations are provided for HF radar operators. 

1) Add standard-range HF radar sites to fill in gaps in areas closer to shore and in approaches to 
harbors, especially in areas where spatial variability is high.  Consider site development by 
frequency of SAR cases. 

2) Document the software that is used to process data in each area.  Meet with operators in other 
regions to develop standards for combining radials, filling in missing spatial and temporal 
data, and eliminating low quality data.  Develop data sharing standards to facilitate 
interfacing with STPS and SAROPS. 

3) Develop standard quality control and uncertainty estimates so that search areas can be 
modeled more effectively.   

4) Explore schemes to use stored HF radar data to compute and regularly update regionally 
appropriate dispersion coefficients.  To the CG user, CODAR surface current mapping 
credibility is contingent on reliable updates to dispersion coefficients.   

 



 

8-1 

8.  REFERENCES 

Berloff, P. & McWilliams, J. C. (2002). Material transport in ocean gyres: Part II hierarchy of 
stochastic models. Journal of Physical Oceanography, Vol. 32, p. 797-830. 

Csanady, G. T. (1973). Turbulent diffusion in the environment. D. Reidel Publishing Company, 
Boston, MA. 

Chapman, R. D. & Graber, H. C. (1997). Validation of HF radar measurements. Oceanography, 
Vol. 10, p. 76-79. 

Griffa, A. (1996). Applications of stochastic particle models to oceanographic problems, in 
Stochastic Modeling in Physical Oceanography, edited by Adler, R., Mueller, P., & Rozovski, B. 
Boston, MA: Birkhauser, p. 114-140. 

Kohut, J. T., Roarty, H. J., & Glenn, S. M. (2004). Characterizing observed environmental 
variability with HF Doppler radar surface current mappers and acoustic Doppler current; 
profilers. Manuscript submitted for publication. IEEE Journal of Ocean Engineering.  

Mariano, A. J., Ryan, E. H., Perkins, B. D. and Smithers, S. (1995). The Mariano Global Surface 
Velocity analysis 1.0, U.S. Coast Guard Report (CG-D-34-95). Groton, CT: USCG Research & 
Development Center. (NTIS# AD-A302245). 

O'Donnell, J., Ullman, D., Edwards, C., Fake, T., & Allen, A. (2005). The operational prediction 
of circulation and Lagrangian trajectories in the coastal ocean. Unpublished work. University of 
Connecticut at Avery Point. 

Riddles, H., (2003).  Geometric Dilution of Precision of HF Radar Data in 2+ Station Networks. 

Spaulding, M., Isaji, T, Hall, P., & Allen, A. (2005). A hierarchy of stochastic particle models 
for Search and Rescue (SAR): Application to predict surface drifter trajectories using HF radar 
current forcing. Unpublished work. University of Rhode Island. 

Stewart, R. H. & Joy, J. W. (1974). HF radio measurement of surface currents. Deep-Sea 
Research, Vol. 21, p. 1039-1049. 

Taylor, G. I. (1921). Diffusion by continuous movement. Proceedings of the London 
Mathematical Society, Vol. 20, p. 196-212. 

Teague, C. C., Vesecky, J. F., & Fernandez, D. M. (1997). HF radar instruments, past and 
present. Oceanography, Vol. 10, No. 2, p. 40-44. 

Ullman, D., O'Donnell, J., Edwards, C., Fake, T., Morschauser, D., Sprague, M., Allen, A., & 
Krenzien, LCDR B. (2003). Use of coastal ocean dynamics application radar (CODAR) 
technology in U.S. Coast Guard search and rescue planning (CG-D-09-03). Groton, CT: USCG 
Research and Development Center. 

Ullman, D., O'Donnell, J., Kohut, J., Fake, T., & Allen, A. (2005). Trajectory prediction using 
HF radar surface currents: Monte-Carlo simulations of prediction uncertainties. Unpublished 
work. University of Connecticut at Avery Point. 

 



 

 A-1

APPENDIX A.  
DESCRIPTION OF THE RUTGERS UNIVERSITY 

CODAR DATA PROCESSING 

A.1 Introduction 

High frequency radar systems, typically deployed along the coast (Figure A-1), use Bragg peaks 
within a signal (3 ~ 30 MHz) scattered off the ocean surface to calculate radial components of 
the total surface velocity at a given location (Barrick, Evens, Weber, 1977).  Crombie (1955) 
recognized that these peaks were the result of an amplification of a transmitted wave by surface 
gravity waves with a wavelength equal to half that of the transmitted signal.  A signal scattered 
off a wave and back toward the antenna will be in phase with a signal that traveled to the next 
surface wave (½ transmit wavelength further) and returned to the original wave (another 
½ transmit wavelength).  The frequency of the backscattered signal will be shifted depending on 
the velocity of the scattering surface.  Using linear wave theory, the phase speed of the surface 
waves can be separated from the total frequency shift, leaving only that shift due to the surface 
current.  Over a given time period, sites along the coast generate radial component maps of the 
surface current with typical resolutions on the order of 1 to 6 km in range and 5 degrees in 
azimuth (Figure A-2).  Because the Doppler shift can only resolve the component of the current 
moving toward or away from the site, information from at least two sites must be geometrically 
combined to generate total surface current maps. 

      
Figure A-1.  Transmit (left) and receive (right) antennas for a typical CODAR-type long-range 

system. 
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Figure A-2.  Sample radial vector coverage for a long-range and standard-range HF radar system. 

 
Rutgers University operates an array of 10 CODAR-type HF radar systems, 6 of which are lower 
resolution, long-range sites.  With an operating frequency around 5 MHz, these sites measure 
surface currents within the upper 2.4 meters of the water column (Stewart and Joy, 1974).  
Typical spatial resolutions are on the order of 6 km, with maximum ranges exceeding 200 km.  
Four sites along the coast of New Jersey from Wildwood to Sandy Hook provide hourly surface 
current maps over the New Jersey Shelf (Figure A-3).  These four sites form one cluster of 
systems within the North East Observing System (NEOS).  These sites use global positioning 
system (GPS) synchronization so that each site is operating at the same frequency and 
bistatically linked to the other sites within the network. 

 
Figure A-3.  Surface current map of January 19, 2005 at 20:00 GMT.  Coverage is shown for the 

long-range (left) and standard-range (right) systems. 
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Two standard-range systems, currently deployed on opposite sides of the entrance to New York 
Harbor (Figure A-3), are nested within the New Jersey long-range cluster.  With an operating 
frequency of 25 MHz, these systems measure the current within the upper 50 cm of the water 
column.  Typical spatial resolutions are on the order of 1 km with maximum ranges out to 40 km.  
The two sites were recently moved from their original location along the southern coast of New 
Jersey to the New York Bight apex to support (1) a National Science Foundation (NSF)-funded 
project focusing on the Hudson River outflow and (2) the development of ship-tracking 
capabilities near the harbor entrance.  On 26 January 2005, a third standard range site operated 
by Stevens Institute was deployed within the lower harbor.  This site paired with the two Rutgers 
sites brings existing high-resolution coverage into the harbor. 

A.2 Radial data processing 

These CODAR-type systems are direction-finding systems that use a three-element receive 
antenna mounted on a single post to determine the direction of the incoming signals.  The 
angular resolution, set in the processing, is typically 5 degrees (Teague, Vesecky, Fernandez, 
1997; Barrick and Lipa, 1996).  For the radial vector map processing, raw time series from each 
element are transformed into cross-spectra with a 1024-point fast Fourier transform (FFT).  For 
the long-range systems, these data are created every 17 minutes and averaged hourly, centered on 
each half hour.  For each range bin, spectra are run through a multiple signal classification 
(MUSIC) algorithm with the measured beam patterns (Kohut and Glenn, 2003) to calculate the 
bearing of each radial velocity within the first-order Bragg region (Schmidt, 1986; Barrick and 
Lipa, 1999).  This first-order region was limited to signal to noise ratios (SNR) of at least 5.0 dB.  
Each hour, seven of these hourly velocity estimates, each overlapped by half an hour, are 
averaged to get a 4-hour running average for the center time.  This file is input to the vector 
combination procedure to generate the total vector file described in section A.3. 

The number of radial vectors in any given range cell depends on (1) the digitization interval 
determined by the FFT length, operating frequency, and sweep rate and (2) the number of 
antenna elements in the receive array.  The digitization interval controls how many radial 
velocity vectors are available, and the number of antenna elements determines the number of 
possible MUSIC solutions for each radial velocity.  For our setup with three-receive antenna 
elements, a radial velocity every 3.22 cm/s can be placed in up to two angular bins.  
Consequently, if there are more than two angles with a given radial velocity or periods of weak 
surface currents, data coverage will be reduced.  Based on these constraints, an interpolation was 
done in azimuth.  The scheme linearly interpolated radial data across angular gaps of 15 degrees 
or less (Kohut, Roarty, Glenn, 2004; Kohut and Glenn, 2003). 

A.3 Total vector combination 

Every hour, the available radial vector maps were geometrically combined into a single total 
vector map.  All radial component vectors within 10 km of each grid point were used in the 
combination.  A total vector was generated only if at least three radial vectors from at least two 
remote sites were used in the combination.  When the orthogonal velocity components are 
combined into total vector estimates, errors are introduced.  The uncertainty of the combined 
totals can be separated into radial vector uncertainty and geometric uncertainty.  The geometric 
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uncertainty is based on the angles of the radial component vectors.  The farther the radials are 
from orthogonal, the greater the uncertainty.  This uncertainty is described by Chapman and 
Graber (1997) as geometric dilution of precision (GDOP).  These uncertainties increase along the 
baseline between the coastal sites as well as offshore.  In these regions, the radial component 
vectors are resolving the along-shore and cross-shore velocity components, respectively.  The 
relative magnitude of the geometric uncertainty was calculated at each grid point for every 
current map (Gurgel, 1994).  Using this scalar as an indicator of the magnitude of the geometric 
contribution to the uncertainty, data subject to poor geometry were eliminated.  This was done by 
eliminating all data above a threshold of 1.25.  This 1.25 threshold was chosen based on 
qualitative analysis of previous data.  Drifter deployments offer an excellent opportunity to better 
define this threshold and apply it to future system operation.  For the duration of the project, total 
vector fields were made with and without the geometric filter (Figure A-4).  For the purpose of 
this analysis, the unfiltered data was used to evaluate the filter, and the filtered data was used for 
all direct comparisons to drifter velocities. 

 
Figure A-4.  Surface current map combined with (right) and without (left) the geometric filter. 

A.4 Drifter velocities 

The drifter position data were used to evaluate the CODAR observations.  The drifter data used 
here are from the deployment during the summer of 2004 (July 27th to August 31st).  Throughout 
the deployment, drifter positions were reported every half hour (Figure A-5).  SLDMBs #32773, 
#32776, and #32779 were deployed in the BIS and moved southwest along the southern Long 
Island coast.  SLDMBs #43057 and #43060 were deployed in the upper Hudson Canyon and 
moved south into the center of the coverage, and SLDMBs #43061 and #43062 were deployed 
farther offshore and moved in and out of the coverage through the deployment.  Drifter velocities 
were calculated to match the averaging of the CODAR processing.  Velocities based on two 
drifter positions one hour apart were calculated every half hour.  Each hour seven of these hourly 
velocity estimates, each overlapped by half an hour, were averaged to get a 4-hour running 
average for the center time.  These drifter data were compared to CODAR observations.  At each 
time step, the CODAR data were linearly interpolated to the drifter position.  Because only radial 
data within 10 km of a grid point were combined to create the total vector grid, comparisons 
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were limited to times when the drifter was no more than 10 km from the closest CODAR grid 
point. 

 
Figure A-5.  Tracks of the seven drifters (black line) deployed between July 27, 2004 and 

August 31, 2004.  The deployment sites (green circle) and the 50 percent 
CODAR coverage contour (gray line) are also shown. 

A.5 CODAR/drifter comparisons 

CODAR data were validated against seven drifters deployed in the summer of 2004.  For each 
drifter within the CODAR coverage (Figure A-5), comparisons were drawn between spatially 
interpolated CODAR observations and climatological estimates.  Because the CODAR data 
sampled the surface current over different horizontal and spatial scales than the drifter, the 
current estimates differed in the absence of instrument uncertainty.  Therefore, the contribution 
to the RMS difference includes CODAR uncertainty, drifter uncertainty, and sub-grid scale 
uncertainty.  The standard deviation of the drifter data calculated with the seven half-hourly data 
averaged each hour was used as an estimate of the sub-grid scale uncertainty.  For reference, the 
average standard deviation for all drifters through the entire deployment was 7.2 cm/s for the east 
component and 6.2 cm/s for the north component. 

The average RMS difference among all available drifter and CODAR velocities was 9.1 cm/s in 
the east component and 12.1 cm/s in the north component.  The same drifter data were compared 
to Mariano climatology giving an RMS difference of 17.3 cm/s in the east direction and 
15.9 cm/s in the north direction (Table A-1). 
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Table A-1. Comparison statistics among drifter velocity, Mariano climatology, and CODAR 
observations.  For reference, the standard deviation of the drifter data was 7.2 cm/s 
for the east direction and 6.2 cm/s for the north component. 

SLDMB 
Number 

Velocity 
Component 

SLDMB/CODAR 
RMS (cm/s) 

SLDMB/ 
Mariano Climatology 

RMS (cm/s) 
32773 East 7.7 18.1 
32773 North 11.0 13.5 
32776 East 10.1 19.4 
32776 North 12.4 15.3 
32779 East 7.6 17.3 
32779 North 10.4 13.3 
43057 East 8.1 16.9 
43057 North 11.3 14.9 
43060 East 9.6 16.6 
43060 North 10.1 15.2 
43061 East 12.2 17.9 
43061 North 16.9 22.7 
43062 East 8.6 15.2 
43062 North 12.6 16.1 

Average East 9.1 17.3 
Average North 12.1 15.9 

 
For each drifter, the RMS difference with the CODAR observations was lower than that with 
Mariano climatology.  In addition, the east component of the CODAR data had a lower RMS 
difference than the north component for all drifters.  This difference is evidence of the additional 
uncertainty in the north component due to site geometry.  All the sites in this network were 
deployed along the New Jersey coast.  Given the drifter location and the radial coverage of these 
sites, the east component of the total vectors was better resolved by the radial vectors than the 
north component.  SLDMB #32773 clearly illustrated the geometric uncertainty in the vector 
combination (Figure A-6).  Early on in the deployment, the drifter was south of Long Island 
where the radial vectors measured at the CODAR sites better resolved the east velocity 
component.  The time series clearly shows better agreement between the east component of the 
CODAR and drifter observations compared to the north component.  As the drifter moved closer 
to the sites and better geometry, the north component was better resolved and the agreement 
improved.  SLDMB #43060 spent more time in the coverage area with better geometry, and the 
agreement was good throughout the time series.  The CODAR data are an improvement to 
existing Mariano climatology when compared to drifter velocity estimates.  Future work will 
focus on refining the geometric filter and processing algorithms to improve both the geometric 
and CODAR uncertainties. 
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Figure A-6.  Drifter track (red line) (left), CODAR coverage area (green) (left), and time series 

of the east and north velocity components from drifter locations (red trace), 
CODAR (blue trace), and Mariano climatology (black line).  The upper panel is for 
SLDMB #32773, and the lower panel is for SLDMB #43060. 
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APPENDIX B.  
STPS ENHANCEMENTS IN THE BIS REGION 

B.1 Enhanced STPS with no wind in the BIS region 

Using CODAR data for the December 2003 to January 2004 period, the period when drifter data 
were available in the BIS area, there was no substantial improvement to the performance of the 
algorithm when local covariance estimates and the covariance of the current components were 
used.  Figure B-1 shows a comparison of the area-averaged error in the forecasts of the original 
algorithm with that of the new algorithm in support of this conclusion.  The difference in root-
mean-squared (RMS) errors is less than 0.25 cm/s. 

Time Since Prediction (h)

Er
ro

r c
m

/s

Time Since Prediction (h)

Er
ro

r c
m

/s

 
Figure B-1.  Area-averaged RMS error in the east (blue lines) and north (red lines) components 

of the surface currents estimated by the original (solid lines) STPS algorithm and 
the enhanced STPS algorithm with local covariance and covariance component 
modifications (dashed lines) in the BIS region. 

 

The spatial structure of the errors at the 6-hour forecast time is presented in Figure B-2.  The 
distribution and magnitude of the errors are very similar in large areas where the error is 
approximately 10 cm/s and areas of slightly higher error where the geometry of the CODAR 
system degrades the precision of the vector estimates.  The top figures, the east components, 
have more areas of green and yellow, corresponding to higher RMS errors. 
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Figure B-2.  The distribution of the time-averaged RMS error in the surface current predictions 

of original (left two frames) and new STPS (right frames) in the BIS area.  The 
errors in the east components are presented in the top two frames and the north 
component in the lower frames. 

 

B.2 Enhanced STPS with measured wind in the BIS region 

Measured wind data were included in the Gauss-Markov procedure to generate current forecasts.  
Note that wind forecasts were not included at this stage of the analysis.  The wind data were 
acquired from NDBC buoy #44025.  Figure B-3 displays a comparison of the area-averaged 
error.  Again, there was no improvement in the prediction skill. 
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Figure B-3.  Area-averaged RMS error in the predicted east (blue lines) and north (red lines) 

velocity components of the surface currents estimated by the enhanced STPS 
algorithm without wind data (dashed lines) and the enhanced algorithm with 
measured wind data (solid lines) in the BIS area. 
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Abstract 
 
The ability to predict the movement of particles drifting at the surface of the coastal ocean is of 
great value to agencies responsible for the management of oil spills, search and rescue 
operations, marine safety and coastal water quality.  High frequency radio surface-current 
measuring systems that are capable of mapping wide areas can be exploited for this purpose.  We 
present a simple statistical technique that exploits observations to extrapolate Eulerian velocity 
estimate 12 hours into the future.  We then use these predictions in the Euler-Lagrange 
transformation to simulate the trajectories of drifting particle.  The performance of both the 
Eulerian forecast and the trajectory forecast technique are evaluated by comparison to 
observations in Block Island Sound and the adjacent shelf.  We also evaluate the performance to 
an algorithm similar to that in operational use to gauge the practical value of the system.  We 
find that the surface current predictions have root mean square errors averaged over the ~800 
km2 area of less than 15 cm/s for forecasts up to 12 hours.  The errors appear to be correlated 
with wind, suggesting that the algorithm could be further refined.  When employed to forecast 
drifter trajectories we find that the root mean squared separation between predicted drifter 
locations and observations show that 95 percent of the differences are less that 7 km at 6 hours 
and 13 km at 12 hours.  This is approximately a factor of two better than methods currently in 
operational use.  

C.1 Introduction 

Several surface current mapping systems (e.g. CODAR, WERA, OSCAR) that exploit the 
Doppler shift in the Bragg scatter from high frequency radio transmissions have been developed 
and are now commercially available. We will refer to them collectively as SCMS. Though they 
differ in important technical characteristics, we believe our work is equally applicable to 
observations from all designs.  Some installations have been operating for more than 7 years 
(Glenn and Schofield, 2003) and the data has been extensively used in science programs (Kohut 
et al, 2004).  Though there is a variety of algorithms that transform the backscatter spectra to 
velocity and many technical improvements remain possible, system designs have become stable 
and very reliable in the last few years and are ready for operational use as a central component of 
an integrated ocean observing system. 
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The timely and accurate prediction of the motion of material floating at the ocean surface is a 
critical limitation to the effective response to marine safety emergencies and the accidental 
release of pollutants.  In particular, the availability of SCMS has the potential to offer substantial 
advantage to the CG, which currently relies on sparse network stations at which tidal current 
harmonics have been estimated.  As has been well established (see, for example, Ridderinkof and 
Zimmerman, 1992), the interaction of tidal currents with spatially varying mean flows can create 
extremely rapid Lagrangian dispersion.  Since SCMS can reveal the spatial structure of the 
circulation, they offer the potential of substantial improvement in the effectiveness of search 
planning.  Because of the shape of the coastline, harbors and estuaries have complex currents, a 
lot of boat traffic, and frequent marine accidents.  SCMS could, therefore, help save lives in the 
immediate future.  

The spectral averaging, data telemetry and processing required by SCMS delays the availability 
of observations.  The most recent observations currently available can be 1 to 3 hours old.  The 
integration of surface current measuring infrastructure to operational safety and management 
systems, therefore, requires that a forecast capability be developed for the Eulerian currents and 
that an algorithm be developed that can effectively exploit forecasts to predict Lagrangian 
trajectories (particle paths). 

In this paper our intent is to describe the development and performance of an algorithm that 
exploits data to produce short term (0-24 hour) forecasts.  The approach we adopted makes no 
assumptions about the underlying dynamics and ignores the coastal geometry and bathymetry.  
The primary advantage of this approach is that the algorithm can be readily applied in any area 
with an operational SCMS with limited effort and expense.  It is unlikely that this will be the best 
approach in the long run.  However, it is easily implemented and it establishes a benchmark 
against which more sophisticated algorithms can be evaluated.   

We use the Eulerian forecast algorithm to predict Lagrangian trajectories in Block Island Sound 
and the adjacent continental shelf.  To evaluate the effectiveness of the approach we deployed 
surface drifters.  To establish the relative importance of the limitation imposed by the data and 
the prediction system we simulated the drifter trajectories using data and the forecast system.  
We also evaluated the performance of the system that is currently in use that neglects much of 
the spatial structure in the flow field.  We demonstrate that the SCMS-based system is limited by 
data quality but is substantially better than the available technology in the test area. 

In the next section we describe the characteristics of the flow in the area of Block Island Sound 
where a standard range CODAR system has been in operation since 2000.  We deployed a 
flotilla of GPS tracked CODE-style drifters to assess the effectiveness of the system and describe 
this data in Section 3.  We then define the empirical forecasting algorithm in Section 4 and assess 
its performance by comparing predictions to SCMS observations in Section 5.  The effectiveness 
of the simulation of drifter trajectories using both the observed and forecast currents is assessed 
in Section 6 by comparing them to drifter tracks.  We summarize the results and comment on 
potential developments in Section 7. 



 

 C-3

C.2 Block Island Sound current observations 

In 2000 the National Ocean Partnership Program (NOPP) sponsored the development of an 
experimental coastal ocean observatory at the approaches to Block Island Sound, an area of 
strong tides and significant buoyancy driven circulation on the Southern New England Shelf.  
Figure C-1.  The coastline and bathymetry of Block Island Sound with the location and 
approximate observation areas of three CODAR sites. shows a map of the area with the 
bathymetry.  Ullman and Cornillion’s (1999) analysis of surface temperature observations 
demonstrated that this is an area with persistent and complicated fronts.  O’Donnell and Allen 
(1992) used drifter observations and data from a moored current meter to demonstrate that there 
is substantial mean exchange flow through Block Island Sound associated with the estuarine 
outflow from Long Island Sound.  They showed the surface motion is to the east and south at 
approximately 10 cm/s carrying the brackish effluent to the adjacent continental shelf.  Salty 
shelf water flows north and west into Long Island Sound along the relic river channel that is 
apparent in the isobaths.  

 
 

Figure C-1.  The coastline and bathymetry of Block Island Sound with the location and 
approximate observation areas of three CODAR sites. 

Figure C-1 also shows the location of the three standard range CODAR SeaSondes© that were 
deployed in 2000 at Misquamicut, RI, Montauk Point, NY, and Block Island, RI, also displayed 
with their approximate areas of coverage.  HF radio frequency backscatter observations by these 
instruments can be combined to obtain estimates of the near surface, approximately the top 2 
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meters, velocity component in the radial direction towards the receivers in 2 km range and 5 
degree azimuth cells every hour.  At the FRONT site the “radials” from all three sites are 
combined by weighted area averaging to form east and north components of the velocity at the 
points indicated by the “+” symbols in Figure C-1.  Ullman and Codiga (2004) present an 
analysis of the mean and seasonal variation of the circulation in the area using observations from 
this system.  

C.3 Drifter Data 

The RV Connecticut deployed four CODE-style surface drifters (see Davis, 1985) equipped with 
GPS navigation and Argos data telemetry systems in Block Island Sound during December 2002 
within the coverage area of the FRONT CODAR system.  The four rectangular drag elements 
(sails) of the drifter were 0.7m by 0.3m and were suspended 0.3m below the surface.  Several of 
these drifters were recovered and redeployed, while one failed to return useful data.  
Subsequently, in March 2003, CG helicopters air-deployed an additional 12 drifters, of which 4 
were deployed in the FRONT region and 8 off the New Jersey shore for a study that will be 
described elsewhere.  The drifters reported their positions at 0.5-hour intervals via the Argos 
network.  The time series of drifter position were decimated to hourly intervals to align with the 
hourly CODAR current estimates.  Each drifter track was broken up into a series of 24-hour 
segments that were treated as independent trajectories for the analysis of errors in drift prediction 
performance (Figure C-2).  The start times of the segments were offset by 12 hours.  Thus the 
first trajectory for a given drifter starts at the time of the first good position (t0) with subsequent 
pseudo-independent trajectories starting at t0+12, t0+24, etc. 
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Figure C-2.  Trajectories of drifters launched in the area of Block Island Sound in December 

2002 and March 2003. 

C.4 Eulerian Current Forecast Algorithm 

C.4.1 Overview 

The surface current forecast algorithm is based on an empirical decomposition of the currents 
into three components.  As in most of the coastal ocean, a strong component of the motion is due 
to tides, a weaker and more slowly varying component is driven by winds, and a more persistent 
motion associated with ocean density variations and very low frequency waves.  The tidal 
circulation is periodic and, therefore, easy to forecast.  The largest five tidal constituents in the 
FRONT region are listed in Table C-1.  Three are semidiurnal and two are diurnal.  Least-
squares harmonic analysis method is used to compute the amplitude and phase of these 
constituents at each CODAR grid point.  In our forecast algorithm the harmonic analysis is 
performed each week using the observations acquired during the prior month.  The constituents 
are used to predict the tidal component of the circulation for the next week.  

C.4.2 Tidal Circulation 

The least-squares method for determination of the harmonic constituent amplitudes and phases 
also provides estimated uncertainties in these parameters (Press, et al., 1992). Using standard 
propagation of errors techniques (Emery and Thomson, 1997) these uncertainties can be used to 
estimate the error in a tidal prediction made with the harmonic constituents. The prediction errors 
are independent of time, but exhibit some variation with location as shown in Figure C-3. 
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Generally, the errors are less than 3-4 cm/s. In a small region southeast of Block Island, however, 
they reach 5-10 cm/s. 

 
Table C-1.  Major tidal constituents in FRONT area. 

Constituent Period (hours) 
S2 12.00 
M2 12.42 
N2 12.66 
K1 23.93 
O1 25.82 
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Figure C-3.  Uncertainty in the eastward (top) and northward (bottom) components of the tidal 

current predictions.  The predictions are made using constituents derived from 
harmonic analysis of 1-month time series. 
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C.4.3 Non-tidal Motion: Hedging 

Two methods for predicting the non-tidal current component were tested.  We refer to the first as 
the “hedging” method.  In it we assume that the non-tidal current observed for the last TH persists 
throughout the prediction interval.  The second method exploits the archived data to characterize 
the structure of the correlation in the data.  It is essentially an application of Gauss-Markov 
estimation (Wunsch, 1996). 

 
The hedging method requires the estimation of the non-tidal current, NTu′ , at the time of 
prediction, pt .  The simplest approach is to subtract the predicted tidal current, Tu , from the 
observed current, OBSu , at the time of the prediction.  However, to reduce noise, some averaging 
is desirable.  Our hedging estimate of the non-tidal flow is computed as 

∑
=

−′=
M

m
mpNTpNT tu

M
tu

1

)(1)(  (1) 

where TOBSNT uuu −=′  and M is the number of samples in the averaging interval HT .  The 
choice of HT  is somewhat arbitrary but should reflect the timescale of autocorrelation.  We have 
tested the values of 25 and 49 hours.  The predictions derived from the 25-hour average were 
more accurate for short-term predictions (i.e. 24 hours or less) and we used it in the operational 
evaluation discussed below. 

C.4.4 Non-tidal Motion: Gauss-Markov 

It has been well established that the non-tidal motion in this area is autocorrelated (Pettigrew, 
1981) as it is elsewhere in the coastal ocean (see, for example, Kundu and Allen, 1976).  This 
correlation can be exploited by representing the desired prediction at time tp+δt as a linear 
combination of previous measurements, i.e. 

∑
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where αm represent weights and the sum is taken over the M prior data values.  Unlike the 
hedging method defined in equation (1), the predicted non-tidal current is not constant during the 
prediction interval since (2) is evaluated for each tp+δt.  The Gauss-Markov theorem states that 
appropriately chosen weights, based on knowledge of both the measurement errors and the 
autocovariance of the data, produce a solution that minimizes the variance of the difference 
between the estimate and the true value.  For a data series with zero-mean, this estimate is 
unbiased and is referred to as the best linear unbiased estimate (Wunsch, 1996).  

Our procedure assumes that measurement errors have zero mean, are uncorrelated, and are 
normally distributed with standard deviation distributed as in the maps of Figure C-4. 
Autocovariance functions, are calculated at each location from one month of data and averaged 
over the entire CODAR domain.  The autocovariance functions (Rxx), shown in Figure C-5, 
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describe the degree of temporal correlation in the data time series.  If we define Rnn=σ I, the 
weights are found to be 

[ ]{ }∑
=

−+=
J

j
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1

1),(),(),(α . (3) 

 
Figure C-4.  Estimated uncertainty in CODAR current observations. 
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Figure C-5.  Autocovariance functions for u (top) and v (bottom), averaged over the entire 

CODAR domain for the month of November 2002. 

Data statistics are assumed to be stationary in time, but in operational mode this calculation 
could be repeated regularly, perhaps once a month, to ensure that long-term variations of the 
statistical character of the fields are captured. 

An attractive advantage of the Gauss-Markov approach is that it also produces estimates of the 
uncertainty in the prediction.  At short time scales, and in cases where the measurement signal to 
noise ratio is high, this uncertainty is approximately equal to the measurement noise.  As the time 
of the prediction extends, the uncertainty approaches the data variance.  This estimate of the 
uncertainty can be very useful for a short-term predictive modeling system, and its consistency is 
evaluated below. 

C.5 Evaluation of Forecasts 

The algorithm is evaluated by comparing the predicted surface currents to subsequent 
measurements.  The two methodologies are tested using a 28-day period starting December 1, 
2002.  The measure of the prediction error is the root-mean-square (RMS) difference between 
predicted and observed currents, defined for the eastward component as: 

( ) ( )( )∑
=

−=
N

n
nobsnpRMS tutu
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U

1

21 , (4) 

where up(tn) is the predicted eastward current, and uobs(tn) is the corresponding measurement at 
time tn, and the average is spatial over N pairs of observations/predictions.  RMSU  is expected to 
depend on the time since the prediction was made, pn tt − , the  forecast lag.  Equation (4) and the 
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corresponding equation for the northward velocity component, are evaluated separately for each 
forecast lag up to a maximum lag of 25 hours. 

C.5.1 Region-Averaged Differences 

Evaluation of the differences averaged over the entire FRONT domain provides an assessment of 
the performance of the algorithm.  Figure C-6 shows the dependence of RMSU  for both the 
hedging and Gauss-Markov methods functions of the forecast lag.  Note that the same tidal 
prediction method is used for both cases.  As expected, the errors increase with the forecast lag, 
rapidly at first, and then approach constant values (approximately 15 cm/s for v and 20 cm/s for 
u) at large lags.  Forecasts of the northward component are more accurate than those of the 
eastward component for all forecast lags, with the difference being of the order of 3-6 cm/s.  This 
is likely a regional effect, resulting from the fact that the wind-driven currents are predominantly 
in the east-west direction, whereas the more easily predicted tidal currents are oriented more 
north-south.  The performance of the Gauss-Markov method is clearly superior to the hedging 
method at all forecast lags by approximately 2-3 cm/s. 

 
Figure C-6.  RMSU  differences averaged over the entire domain as a function of forecast lag.  

The dashed and solid curves are the results respectively of using the hedging 
method and the Gauss-Markov technique for estimating the non-tidal current. 
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C.5.2 Spatial Structure of the Differences 

In the FRONT region the dynamics and geometry conspire to create substantial spatial variations 
in the magnitude of the tidal and non-tidal current components.  It is important, therefore, to 
investigate how the algorithm performs in different parts of the region.  This is accomplished by 
evaluating the RMSU  at each CODAR grid point by setting N=1 in and tn = 6, 12 and 24 hours in 
equation (4).  Maps of the structure of RMSU  are presented in Figure C-7, Figure C-8 and Figure 
C-9. 



 

 C-13

 
Figure C-7.  Spatial structure of the RMS differences for predictions made using the hedging 

method (left) and the Gauss-Markov method (right), evaluated 6 hours after the 
prediction was made. 
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Figure C-8.  Spatial structure of the RMS differences for predictions made using the hedging 

method (left) and the Gauss-Markov method (right), evaluated 12 hours after the 
prediction was made. 
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Figure C-9.  Spatial structure of the RMS differences for predictions made using the hedging 

method.  

 
It is immediately apparent from Figure C-7, Figure C-8 and Figure C-9 that the spatial structures 
in the error maps for the two methods are quite similar.  As noted above, differences in 
magnitude are observed at all lags with the Gauss-Markov method performing somewhat better 
for both components.  The largest errors in the eastward component occur along the edges of the 
domain, especially the areas south of Montauk Point and Block Island.  These are regions where 
the CODAR measurements themselves are least accurate with respect to the eastward component 
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(see Figure C-4, top).  As will be discussed below, the increased measurement uncertainty 
damages both the prediction itself and its evaluation.  The spatial structure of the error in the 
predicted northward component is quite different.  Although predictions are poor at a few 
CODAR grid points along the edge of the coverage region southeast of Block Island, generally 
the largest errors occur in the zone between Montauk Point and Block Island.  Because of the 
coastal geometry, the strongest north-south non-tidal currents and vertical stratification occur in 
this area, suggesting a linkage between current magnitude and the prediction error. 

C.5.3 Consistency of the Uncertainty estimates 

For the current predictions to be useful for the prediction of Lagrangian trajectories and the 
uncertainty of the target location, it is essential that the uncertainties in the predicted current at 
the time that the predictions are made be established.  Because of the superior performance of 
the Gauss-Markov technique and the fact that it provides error estimates as well, we focus in the 
following on the predictions made using this method. 

The RMS differences between the predicted and observed surface currents result from three 
contributions.  The observations themselves are uncertain, and there are errors associated with 
the prediction of the tidal and the non-tidal motions.  Mathematically, this can be expressed: 

222
gmtidalobsRMSU σσσ ++= , (5) 

where RMSU  is the difference between the observations and predictions, and σobs, σtidal, and σgm 
are the uncertainties in the observations, the tidal predictions, and the Gauss-Markov predictions 
of the non-tidal current, respectively.  To evaluate the consistency of the observations and the 
assumptions, we compare the left-hand side of (5) with the right-hand side for both east and 
north components in Figure C-10.  The fact that the points generally fall along line of unit slope, 
(the red lines in Figure C-10), is evidence that the prediction errors are consistent with the 
assumptions and estimates of the measurement and algorithm errors. 

Equation 5 can be rearranged to provide an expression for the total prediction error in terms of 
the actual RMS difference and the estimated observational error: 

2222
obsRMSgmtidalpred U σσσσ −=+= . (6) 

predσ provides an a posteriori estimate of the true forecast performance since the prediction can 
not be better than the observations.  Figure 11 shows the evolution of predσ  for the Gauss-
Markov method averaged over the whole domain.  The prediction error is only about 2 cm/s less 
than the RMS observation/prediction difference, reflecting the fact that 2

obsσ  in Figure C-4 is 
much smaller than 2

RMSU in Figure C-7, Figure C-8 and Figure C-9.  There is, therefore, 
considerable scope for improvement in the forecast model by the inclusion of dynamical 
constraints.  The prediction errors for u and v are 10 cm/s or less at lags less than 2 hours and 
increase to 18 cm/s and 13 cm/s for u and v respectively at forecast lag of 25 hours. 
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Figure C-10.  Observed RMS difference between observed and predicted currents at 12 hours 

versus the sum of the errors in the observations and in the predictions (tidal and 
non-tidal) (a), for the eastward component and (b), for the northward component. 

 

 
Figure C-11.  The solid curves are the root mean square (RMS) difference between predicted and 

observed current, averaged over the entire CODAR domain, as a function of the 
time since the prediction using the Gauss-Markov method.  The dashed curves are 
the estimated prediction errors. 
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C.5.4 Sources of Error 

The observations and predictions at the two CODAR grid points shown in Figure 1 will now be 
studied to examine the sources of error in the predictions.  Figure C-12 (a) shows the evolution 
of the east component of the current observed at station 1 in blue and the predicted current with a 
forecast lag of 12 hours (i.e. the forecast computed at time t-2 hours) in red.  The corresponding 
north components are shown in (c).  Station 1 was chosen to represent the areas where tides 
dominate.  In contrast, station 2 is representative of areas in which tides are weak and the motion 
is dominated by fluctuations at longer time scales.  Figure C-12 (e) and (g) compare the east and 
north components respectively. 

Time series of differences between the observations and predictions at station 1 (Figure C-12b 
and d) do not exhibit the strong tidal fluctuations present in the observations (Figure C-12a and 
c).  This suggests that the tidal prediction is working well.  This is consistent with the estimated 
tidal prediction errors in Figure C-4.  Major errors arise from the non-tidal prediction. Visual 
comparison of the difference time series at the two stations (Figure C-12, b and f, and d and h), 
indicates a correlation, implying similar errors tend to occur simultaneously at the two stations 
and that there is a common source. 

Prior analysis of the CODAR observations has shown that the wind is effective in driving surface 
current fluctuations over the whole domain (Ullman and Codiga, 2004).  To examine this 
mechanism we obtained wind measurements from the NDBC Buoy 44017, located 
approximately 23 miles southwest of Montauk Point.  Figure C-13 shows the dependence of the 
prediction-observation differences (with a forecast lag of 12 hours) on the wind at the time of the 
current observation.  Positive correlations between the differences in the eastward currents and 
the eastward wind velocity, and between the northward wind and northward velocity components 
are apparent.  For example, strong eastward winds tend to produce an eastward flow that is 
stronger than the predicted eastward flow.  This results in a positive difference ( predobs uu − ).  
The behavior is similar for northward winds.  

We performed a similar analysis using the observation-prediction differences at a forecast lag of 
3 hours.  These display weaker correlation with the wind.  This can be understood by noting that 
the Gauss-Markov prediction tends toward the time series mean as the forecast lag increases.  So 
for 12-hour forecast lag, the prediction is closer to the mean than for the 3-hour case, so the 
wind-driven current fluctuations will produce larger differences that are correlated with the wind.  
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Figure C-12.  Comparison of CODAR currents in December 2002 with predicted currents using 

the Gauss-Markov method 12 hours prior to the observation times.  Shown are 
results from stations 1 (a-d) and 2 (e-h) in Figure C-1.  Panels (a) and (e) show the 
observed and predicted u (east); (b) and (f) show the difference between the 
observed and predicted u; (c) and (g) show the observed and predicted v (north); 
(d) and (h) show the difference between the observed and predicted v. 
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Figure C-13.  Differences between observed and predicted (using the Gauss-Markov method and 

evaluating at forecast lag of 12 hours) currents versus the wind measured at 
National Data Buoy Center buoy 44017. (a, c) eastward currents at stations 1 and 2 
(Figure B-1) versus the eastward wind. (b, d) northward currents at stations 1 and 
2 versus the northward wind.  Correlation coefficients are given above each plot. 

C.6 Trajectory Predictions Using CODAR data and Current Predictions 

To demonstrate the potential practical utility of our empirical forecast approach, we now show 
its performance in a problem of significant importance.  The ability to predict the trajectory of an 
object released in the ocean at a known time and location is critical to effective marine search 
and rescue operations.  It also has application in the management of oil spill and some military 
operations.  Since we have developed a forecast capability for the Eulerian currents, we now 
evaluate its utility in the prediction of particle motion.  We first introduce the method we employ 
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for the Euler-Lagrange transformation and then test the approach by comparing drifter tracks to 
trajectory predictions based on forecast currents, and ones based on current observations.  These 
comparisons allow us to estimate the expected errors and the relative contributions of the 
uncertainty in the data and the forecast algorithm.  We also evaluate the effectiveness of an 
algorithm like that used at the moment to quantitatively establish the magnitude of the 
improvement that could be achieved with an SCMS. 

C.6.1 Trajectory Prediction  

By definition, the Eulerian and Lagrangian velocity at any particular point, xp, and time, t, the 
Lagrangian velocity and Eulerian velocity, u(xp,t), must be equal, i.e.,  

( )t
dt

d
p

p ,xu
x

=  (7) 

The SCMS system provides us with uobs(x,t) at hourly intervals and the forecast algorithm allows 
us to compute upred(x,t) for a short time into the future.  We can use either of these to 
approximate the right-hand side of (7).  Obviously the forecast must be used operationally, but 
since the predicted currents can not be shown to be any more accurate than the observations, use 
of the data,  

u=uobs(x,t),  (8) 

in (7) establishes the upper bound for the performance of the prediction of the Lagrangian 
trajectory.  

The numerical integration of (7) is quite straightforward and we employed a simple second-order 
predictor-corrector scheme (Press et al, 1992).  The velocity must be interpolated from the 
data/prediction grid to xp and we employed a nearest neighbor averaging scheme.  The velocity 
components at the closest four grid points are weighted inversely as the square of the distance 
from xp.  This is a robust method in the sense that it will provide an interpolated velocity in the 
presence of data gaps.  In the absence SCMS data, archived tidal constituents at the nearest 
station available, xN, could be used to estimate the right side of (7).  This is equivalent to the 
approximation 

( ) ( ) ( )ttt NNp uxuxu == ,,  (9) 

which ignores the spatial structure of the circulation.  Since this is all that is available to the CG 
at this time we compare the consequences approximation (9) to our approach, u(xp,t) = 
upred(xp,t), and to the best prediction possible with SCMS data, (8).  Note that the tidal 
constituents used in this study were obtained from the National Oceanic and Atmospheric 
Administration for the location located 41°2.9′ N, 071° 57.6′ W. 

An example of 24-hour trajectories predicted using Nu  and uobs in (7), together with the track of 
a drifter released near xN at 00:00 on 16 December, 2002 are shown in Figure C-14.  The release 
point is shown by the black X.  The surface velocity field at the end of the 24 hours is also shown 
to illustrate the spatial structure of the flow in the region.  The drifter trajectory is represented by  
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Figure C-14.  Sample Trajectory Predictions. 

 
the black line, and the simulated tracks using Nu  and uobs are colored red and blue respectively.  
The open circles denote the final positions.  In this example the trajectory predicted using )(tNu  
has a large error after 24 hours.  The separation between the prediction and the drifter location is 
approximately 25 km.  In contrast, the trajectory predicted using the uobs(x,t) is only 3 km.  This 
case clearly illustrates the consequences of neglecting the spatial structure of the circulation.  Of 
course, in the performance of the trajectory, simulations are sensitive to the release location and 
the Figure 14 is an extreme case.  We explore the statistics of the errors in the next section. 

C.6.2 Trajectory Error Statistics 

As Section C.3, each drifter trajectory was segmented into 24-hour segments with the beginning 
of each segment offset by 6 hours.  Current predictions were generated for 24 hours for each 
drifter segment.  Each segment was then treated like an independent drifter release and trajectory 
predictions computed using three estimates of the Eulerian current, )(tNu , uobs(x,t), and 
upred(x,t).  This approach allowed 140 release points to be sampled throughout the FRONT 
CODAR domain.  At each time step, the separation between the actual and predicted SLDMB 
positions was computed and stored.  The resulting database of separation versus time was used to 
produce the histograms of separation at 3, 6, 12 and 24 hours presented in Figure C-15.  We then 
computed the separation value that was greater than 95 percent of the estimates and present it as 
a time series in Figure C-16. 
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Figure C-15.  Block Island Region Trajectory Error Histograms. 
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Figure C-16.  Block Island Region 95th Percentile Separation. 

 
The left column in Figure C-15 shows histograms of the separation between drifters and the 
simulations (the target error) using observed currents, uobs(x,t).  The center and right columns 
show the performance of the simulations based in the forecast currents upred(x,t), and uN(t) 
respectively.  The rows show results at prediction times of 3, 6, 12, and 24 hours. 

Comparison of the histograms at any time shows that the lowest modal values of the target errors 
occur when observed velocities are used (left column).  The central and right columns show that 
the modal target error and width of the histogram are both substantially smaller when the 
forecast algorithm is employed.  For example, at an elapsed time of 3 hours, the upred(x,t) 
predicted positions are always within 10 km of the actual drifter position, whereas a significant 
number of the uN(t) based predictions are in error by 10-20 km.  

The evolution of the target error statistics is most clearly summarized in Figure 16 by the time 
series of the 95 percentiles.  The three curves represent the three current sources.  The green, 
blue and red lines show the values obtained with uobs(x,t),  upred(x,t), and uN(t).  At all times, the 
predictions made using data are the best and those made using uN(t) are the worst, with 
trajectories predicted using the forecast currents intermediate in accuracy.  The 95th percentile 
separation value increases monotonically for the uobs(x,t), and upred(x,t) based trajectory 
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predictions with values at 24 hours of 15 and 30 km respectively.  Using uN(t), the separation 
decreases slightly between about 6 and 12 hours before rising again to a 24-hour value of 40-45 
km.  The reason for this decrease at intermediate times is due to the fact that the uN(t) currents 
are mainly tidal with a period of 12.4 hours.  If applied in a region where tidal currents are 
actually weak (station 2 in Figure C-1 for example), the predicted drifter motion will show a 
large oscillation with this period, whereby the actual drifter will move slowly more or less in one 
direction.  At the end of 12.4 hours in this case, the simulated drifter will have almost returned to 
its starting point and therefore be closer to the actual drifter position. 

C.6.3 Trajectory Errors versus Wind 

CODE-type drifters are thought to exhibit negligible windage (motion relative to the surface 
water driven because of wind).  This was investigated empirically by comparing drifter 
prediction errors, in the Block Island region, with winds measured at a nearby NOAA buoy 
(44017).  The separation between predicted and actual drifter position after 24 hours was plotted 
versus the mean wind magnitude over the 24-hour prediction interval, as shown in Figure C-17.  
The three panels show, from top to bottom, the comparisons of wind speed to separation for 
predictions using uobs(x,t),  upred(x,t), and uN(t).  The first comparison shows that prediction 
errors using observed currents, uobs(x,t),  for the prediction do not correlate with the wind.  We 
interpret that this is because the CODAR observations include the real wind-driven surface 
current component, which is known from prior unpublished work to be large.  In contrast, the 
drifter trajectories simulated by the predicted currents, upred(x,t) and uN(t), tend to be more 
seriously in error under high wind conditions.  Since uN(t), does not include any subtidal 
frequency motion, it is not surprising that the target errors correlate with the wind speed.  
However, the CODAR observation, and the predictions based on them, upred(x,t), do have 
information about the wind driven current, though it appears that the algorithm could be 
improved by capturing the effect of wind more directly.  Note however, that the drifters were in 
the region of FRONT CODAR coverage for only 10 days and we may not have adequately 
sampled the response to wind. 

C.7 Conclusions and Recommendations 

The surface current forecast algorithm developed in this paper is based on the independent 
prediction of the tidal and non-tidal surface current components.  Tidal currents are predicted 
using harmonic constituents derived from a 1-month record of CODAR estimated surface 
currents.  Two methods for predicting the non-tidal component were tested: hedging and Gauss-
Markov estimation.  The Gauss-Markov method was clearly superior at all forecast lags up to 25 
hours, the maximum lag that was tested.  Since the calculation of the autocorrelation function for 
the Gauss-Markov method requires at least a 30-day archive of currents, the hedging approach 
may be useful at new SCMS locations.  Either of these strategies is capable of turning data from 
a coastal current observing network into useful forecast products. 

Analysis of the combined, tidal plus Gauss-Markov non-tidal, prediction algorithm over a 1-
month period gives estimates of the region-averaged prediction error of 9-18 cm/s for the 
eastward component and 7-13 cm/s for the northward component.  The range of prediction errors 
reflects the increase in prediction error with forecast lag.  Note that the performance should be 
expected to be site-specific. 



 

 C-26

 
Figure C-17.  Block Island Region 24-hour Separation versus Wind.  A key component of the 

Short Term Predictive System (STPS) is the estimation, at the time of 
prediction, of the uncertainties associated with the forecast velocities.  The 
magnitudes of the predicted uncertainties are consistent with the computed 
RMS differences and the estimated uncertainties in the observations themselves.  
This leads to the conclusion that the forecast uncertainties can be reliably used 
to characterize the statistics of errors in the predictions.  The prediction 
uncertainties are essential to modeling Lagrangian dispersion. 

The correlation of observation/prediction differences with wind, which is known to be the major 
forcing function for non-tidal fluctuations in the FRONT region, is somewhat surprising.  It 
suggests that the relative weight placed on the data contributing to the prediction is not quite 
correct.  This could result from incorrect characterization of either the observational errors in the 
velocity components or the data autocovariance functions.  The observational errors are 
estimated by assuming that the uncertainty in the radial velocity from a given site is spatially and 
temporally constant, which has yet to be verified for the CODAR system.  The autocovariance 
functions used in our implementation of the Gauss-Markov estimation procedure are averaged 
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spatially over the CODAR domain and are then scaled by the actual data variance at each grid 
point.  This spatial averaging is done to produce smoother autocovariance functions, the use of 
which helps to reduce the incidence of wild predictions at grid points with frequent data gaps.  
However, there is clearly some spatial structure present in the autocovariance functions and its 
neglect can lead to misrepresentation of the data covariance in some locations in the region.  
Further work is necessary to determine whether the use of more robust autocovariance functions 
derived from historical data records of say several months will produce more accurate 
predictions. 

Although more work is necessary to confirm this point, preliminary work on the prediction 
methodology carried out using CODAR data from August 2001 resulted in somewhat lower 
prediction error during that time period as compared with the December 2002 period presented in 
this report.  As the accuracy of the tidal prediction is unlikely to vary in a systematic manner 
over the seasons, this suggests that the non-tidal predictability may be reduced in winter.  This 
may be due to increased non-tidal (wind-driven) current fluctuations driven by wintertime wind 
intensification. 

Comparison of drifter trajectory predictions with observed trajectories demonstrates that the 
SCMS-based forecasts are clearly superior to current practice.  This arises from two major 
improvements: a good representation of the spatial structure of the mean and tidal flow, and 
inclusion of an estimate of the low frequency variability.  The simple Gauss-Markov approach 
results in mean drifter position errors after 6 hours of 7 km and 13 km after 12 hours.  These 
errors are approximately half of that obtained using the tidal current predictions from the 
archives maintained by NOAA, as is currently the operational practice in the CG.  Operational 
use of the currently available technology could, therefore, have the potential of reducing 
predicted search areas by a factor of four. 
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Abstract 
 
An important aspect of trajectory modeling in support of search and rescue applications is the 
assessment of the uncertainty in the search target position.  Many factors contribute to the 
uncertainty and spread of the final position distribution, including uncertainty in: initial position, 
initial time of incident, wind and leeway, and surface currents.  This paper focuses on the 
contribution of the uncertainty in the surface currents to the search and rescue final probability 
distribution.  Monte-Carlo particle trajectory simulations using surface currents derived from 
CODAR High Frequency (HF) radar systems were performed with sub-gridscale motions 
parameterized using random walk and random flight turbulence models, and the resulting 
trajectories were compared to the trajectories of surface drifting buoys.  Velocity statistics for the 
turbulence models were derived from covariance functions of time series of differences between 
CODAR and drifter estimates of surface currents.  Drifter positions, predicted over 24-hour 
periods using CODAR currents, were found to be more accurate predictors of the real drifter 
positions than were initial positions.  The particle dispersion predicted by 24-hour Monte-Carlo 
simulations using the estimated fluctuation statistics was used to determine 95 percent 
confidence regions, which were subsequently tested using the real drifter location.  Search areas 
determined from the 95 percent regions using the random flight model were found to be 80-90 
percent effective, in reasonable agreement with the expected 95 percent success rate.  On the 
other hand, search areas computed from random walk modeling were found to be inadequate 
unless the diffusion coefficient was increased to approximately the random flight value.  The 
effectiveness of the random flight search areas lends support to the proposed methodology for 
estimating turbulence parameters from drifter-CODAR velocity differences. 

D.1 Introduction 

The recent proliferation of coastal High Frequency (HF) surface wave radar installations for 
mapping surface ocean currents provides a rapidly expanding capability for real-time observation 
of surface currents.  These data have the potential to dramatically improve the efficiency and 
success rate of search and rescue operations in coastal waters.  For this reason, the R&DC has 
initiated a program to assess the effectiveness of trajectory predictions using currents derived 
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from HF radar, and if warranted, to implement the use of this technology on an operational basis.  
Preliminary work toward this end was reported by Ullman, O’Donnell, Edwards, Fake, 
Morschauser, Sprague, Allen, Krenzien, (2003). 

Trajectory modeling applied for search and rescue operations must provide a measure of the 
uncertainty in the surface current portion of drift of the search and rescue object in order for an 
optimal search area to be delineated.  The identification of a search area is based on a balance 
between the need to define a large enough area to ensure that the target is within the search area 
and the reality that search resources are finite.  The size of an operational search area is related to 
the magnitude of various uncertainties including those introduced by poorly known initial target 
position and time, velocity errors, and target leeway.  This paper focuses on the estimation of a 
search area due only to uncertainties in the drifter advective velocity provided by HF radar 
systems. 

Search areas are estimated in this paper using a Monte-Carlo approach whereby the trajectories 
of an ensemble of 1,000 particles are modeled over 24 hours.  The advective velocity is 
decomposed into a deterministic, large-scale component measured by the CODAR plus a non-
deterministic component representing a combination of sub-gridscale motion and errors in the 
CODAR velocity.  We make use of the hierarchy of stochastic particle models outlined by Griffa 
(1996), testing the first two of these, the random walk and random flight models, in the present 
work. 

D.2 Data and Methodology 

D.2.1 Drifter Trajectories 

A number of drifter releases in the Mid Atlantic Bight were performed by the R&DC over the 
period 2002-2004 with the objective of providing a data set with which to assess trajectory 
predictions.  Drifters were released in Block Island Sound within the coverage region of the 
standard-range CODAR system operated by the Universities of Rhode Island and Connecticut 
(Figure D-1).  A number of these drifters eventually passed through the coverage region of 
Rutgers University’s long-range CODAR system and a number of additional drifters were 
released within that zone as well (Figure D-2).  The CODE-type drifters (Allen, 1996) recorded 
Global Positioning System (GPS) fixes on one-half hour intervals and transmitted positions via 
Argos.  With one-half hour sampling and a nominal GPS position uncertainty of 10 m, the 
uncertainty in the velocity of the drifter is O(1 cm/s), which will be seen to be small compared to 
the observed differences between drifter and radar-derived velocities.  
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Figure D-1.  Trajectories of surface drifters deployed during December 2002 and March 2003 in 

the Block Island CODAR region.  The black dots show the release points of each 
drifter (note that some were retrieved and redeployed).  The green diamonds show 
the locations of the CODAR sites, and the dashed line shows the approximate 10 
percent coverage region. 
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Figure D-2.  Trajectories of surface drifters deployed during March 2003 (blue) and July 2004 
(red) that passed through the New Jersey shelf CODAR domain.  The black dots 
show the release points of each drifter.  The green diamonds show the locations of 
the CODAR sites.  The dotted line shows the nominal coverage zone and the dashed 
line shows the approximate 10 percent coverage region. 

 
Drifters were deployed in December 2002 in the Block Island region and again in March 2003.  
A number of the latter group subsequently moved southwest on the shelf and passed through the 
New Jersey shelf CODAR coverage region.  A deployment of drifters was also made in March 
2003 within the New Jersey shelf domain.  A final set of deployments was made during July 
2004 in both regions; however the drifters released in the Block Island region rapidly exited that 
domain and did not provide significant trajectory segments.  Table D-1 summarizes the drifter 
deployments.  Initial analysis focused on drifters within the Block Island region during 2002-
2003 and on those within the New Jersey shelf region during 2004.  The New Jersey shelf 
drifters from 2003 were subsequently used for the purpose of verifying the choice of turbulence 
parameters made using the 2004 data. 
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Table D-1.  R&DC Mid Atlantic Bight drifter releases during 2002-2004. 
Date Region Number Notes 

Dec. 16-18, 2002 Block Island 9 Retrieved and redeployed several. 
Mar. 27, 2003 Block Island 4 Passed through NJ Shelf region. 
Mar. 27, 2003 NJ Shelf 8  
Jul. 27, 2004 Block Island 3 Rapidly left domain. 

Passed through NJ Shelf region. 
Jul. 27, 2004 NJ Shelf 4  

 

D.2.2 CODAR Surface Currents 

HF radar surface currents were obtained with CODAR SeaSonde systems located in the Mid 
Atlantic Bight in the region around Block Island and on the shelf east of New Jersey.  A three-
site standard-range (25 MHz) system in the Block Island region provided hourly surface currents 
at 1.5 km resolution over the region shown in Figure D-1.  Radial velocities observed at each of 
the three sites were obtained with the Multiple Signal Classification (MUSIC) algorithm 
(Schmidt, 1986) using measured antenna patterns; and combining into vector velocities was 
performed using the manufacturer’s (CODAR Ocean Sensors) software.  The New Jersey shelf 
surface currents with spatial resolution of 6 km were provided by a four-site long-range (5 MHz) 
system in the area shown in Figure D-2.  Radial velocities, averaged over 3-hour periods using 
measured antenna patterns, were output on an hourly basis and were combined using the Naval 
Postgraduate School’s HF Radar Toolbox.  A screening methodology, utilizing a threshold on 
the estimated geometric dilution of precision (GDOP) (Gurgel, 1994), was used to remove 
current vectors derived from combinations of radials from sites with poor geometry.  Vectors for 
which the GDOP was greater than an empirical threshold of 1.25 were eliminated from 
consideration. 

Estimates of the uncertainties associated with surface currents derived from CODAR systems 
have been provided using in situ velocity observations from Acoustic Doppler Current Profilers 
(ADCPs). Chapman and Graber (1997) cite differences of O(15 cm/s) between HF radar current 
estimates and in situ current measurements. However, as Kohut et al. (2004) point out, these error 
estimates include a large component that is due to the different spatial scales and depths sampled 
by HF radar and ADCPs. They estimate the intrinsic CODAR radial uncertainty to be of O(5 
cm/s) for the New Jersey shelf long-range systems used in the present study. Vector uncertainties 
for the Block Island region were estimated to be 3-15 cm/s with the larger values observed along 
the outer boundaries of the coverage regions where the combining geometry is non-optimal and 
where signal to noise ratios increase (Ullman and Codiga, 2004). 

Interpolation of velocities from the CODAR grid to the location of a drifter was performed using 
a weighted, nearest-neighbor scheme in which velocities from the four nearest-neighbor grid 
points were weighted inversely with distance.  This method is more robust than bi-linear 
interpolation because it is more forgiving of missing CODAR vectors and allows for 
extrapolation beyond the instantaneous zone of CODAR coverage.  Although velocities could be 
extrapolated to any distance beyond the coverage zone, in practice, we restrict the trajectory 
prediction to those trajectory segments that start within the nominal coverage zones shown in 
Figures D-1 and D-2.  Also shown in Figure D-2 is the 10 percent coverage zone.  This is the 
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region within which CODAR vectors are obtained at least 10 percent of the time, computed over 
the drifter deployment period.  Note that in the Block Island region, the 10 percent coverage 
region and the nominal coverage region were the same.  The 10 percent coverage regions were 
used to perform more stringent screening of the trajectories to regions of more reliable CODAR 
currents. 

D.2.3 Monte-Carlo Trajectory Prediction 

The motion of a particle in a two-dimensional velocity field can be described by the equation: 

),( rur t
dt
d

= , (1) 

where r=(x,y) denotes the position of the particle and u=(u,v) is the Eulerian velocity at position 
r and time t.  The velocity can be decomposed into a large-scale, slowly varying component, U 
and a component, ut representing sub-gridscale deviations, which will be referred to as 
turbulence: 

tuUu += . (2) 

Surface current mapping radars such as CODAR can provide estimates of U at spatial scales of 
approximately 1.5 km (6 km) and temporal scales of 1 hr (3 hr) for standard-range (long-range) 
systems, thus the turbulent component represents velocity fluctuations on scales smaller than 
these.  The radar-derived velocity is subject to significant uncertainties such that the large-scale 
component can be expressed as: 

uUU δ+= Radar , (3) 

where Uradar is the radar measurement and δu is the measurement error.  Combining (2) and (3), 
the total Eulerian velocity can be written: 

uUuuUu ′+=++= radartradar δ , (4) 

where u' includes both the turbulent velocity and the measurement error. 

Prediction of particle trajectories in a region of HF radar coverage was achieved by integrating 
(1) using a predictor-corrector scheme with the velocity given by (4).  A time-step of 1 hr was 
used and radar velocities were interpolated to the particle location using the weighted nearest-
neighbor approach.  The methodology for specifying u' is described in the following section.  

D.2.4 Sub-gridscale model 

Although u' is a combination of radar measurement errors, unresolved motion, and true 
geophysical turbulent fluctuations, we hypothesize that its properties can still be described by 
models of turbulence.  This is partly motivated by the fact that there is no easy way to separate 
the two components when comparing with velocity estimates from drifters.  The fact that surface 
drifters are routinely launched in support of search and rescue operations motivates the 
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development of a methodology to estimate the statistics of u' from drifter-derived velocities.  The 
fluctuating velocity, u' will be referred to below as turbulence with the understanding that this 
quantity also contains a significant measurement error component. 

Two models of turbulence were examined, both of which are members of the hierarchy of 
stochastic particle models reviewed by Griffa (1996).  The so-called random walk and random 
flight models both assume that the particle position is Markovian and differ in that the latter also 
assumes that the particle velocity is a Markov variable.  Physically, the difference is that the 
turbulence has a finite temporal scale and therefore temporal correlation in the random flight 
case whereas the random walk model assumes that the turbulent time scale is infinitesimal.  For 
equal turbulent velocity variance, one therefore expects greater dispersion in the former case. 

The two components of the vector velocity u' are assumed independent in both models.  The 
random walk formulation for u' can be expressed as: 

dw
dt

Tu u ⋅=′
2

1

σ , (5) 

where σu is the velocity standard deviation and dw is a normally distributed random increment 
with zero mean and second moment dtdwdw ⋅=⋅ 2 with dt the time step for the integration of 
(1).  The turbulent time scale Tu in the discrete problem is not actually infinitesimal but is 
constrained to equal dt/2 to obtain consistency of (5) and the definition of velocity variance 
(Griffa, 1996). 

The evolution of the turbulent velocity in the random flight turbulence model is described by: 

dw
T

dt
T
uud

u

u

u
2

1

σ
+

′
−=′ . (6) 

The first term on the right of (6) represents the “memory” of the turbulence, decaying with time 
scale Tu which is arbitrary in this case.  The second term is a Gaussian random impulse as in the 
random walk case.  The autocorrelation function of the turbulent velocity decays exponentially 
with an e-folding time or integral time scale equal to Tu (Griffa, 1996). 

It is important to note that the diffusion coefficient for particles in homogeneous turbulence at 
times large compared with Tu is defined as: 

uux TK ⋅= 2σ . (7) 

(Csanady, 1973).  Since for the random walk case, Tu=dt/2, the dispersion in numerical 
implementation of this model, for a given σ2, is dependent on the time step employed. 

D.2.5 Estimating turbulent velocity statistics 

Practical implementation of the aforementioned turbulence models to determine the random 
velocity components in (4) requires specification of the velocity variance, and for the random 
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flight case the turbulent time scale Tu.  One could prescribe the diffusion coefficient in both 
cases, but we argue that with relatively few drifters deployed and lacking large clusters, it is 
more appropriate to estimate the fluctuating velocity statistics than the diffusion coefficient.  
From (4), the fluctuating velocity is: radarUuu −=′ , and we consider the drifter velocity to 
approximate the true velocity u. 

Time series of drifter positions at 1/2-hourly intervals were used with a central difference scheme 
to compute drifter velocities at times (hourly) corresponding to CODAR observations.  CODAR 
velocities were then spatially interpolated to the drifter location using a weighted nearest-
neighbor method.  Velocities at locations outside of the 10 percent coverage zones were 
eliminated from consideration.  Time series of u' for each drifter were then computed by 
differencing the drifter and CODAR velocities.  These time series were used to estimate 
covariance functions, averaged over all drifters, for the u' and v' components (Figure D-3). 

 
Figure D-3.  Lagged covariance functions of time series of differences between drifter velocity 

and CODAR velocity averaged over all drifters within the Block Island region 
(left) and the New Jersey shelf region (right).  The autocovariances of the 
eastward (u) and northward (v) components are shown by the blue solid and the 
red dashed lines, respectively.  The green dash-dot line denotes the cross-
covariance. 

 
The autocovariance functions exhibit rapid decay at lags of several hours and display lower 
amplitude periodicities at the semi-diurnal period in the Block Island region and at 
approximately the inertial period in the New Jersey shelf region (Figure D-3).  The cross-
covariance is generally low, consistent with statistical independence between the two 
components.  Turbulent variances were estimated as the zero-lag values of the autocovariance 
functions.  The turbulent integral time scales were estimated as one half the time lag of the first 
zero crossing of the autocovariance functions.  The estimates of these parameters are given in 
Table D-2. 
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 Table D-2.  Estimates of turbulence parameters from autocovariance functions of drifter-
CODAR velocity differences for the two CODAR regions. 

Region σu (cm/s) Tu (h) σv (cm/s) Tv (h) 
Block Island 14.4 1.5 11.8 1.5 
NJ Shelf 10.6 3 12.3 3 

D.3 Results 

To evaluate the consistency of our approach to modeling dispersion and the estimates of the 
parameters, we compared observed drifter trajectories over 24 hours to those predicted 
retrospectively using CODAR velocities.  The trajectory of each drifter was broken down into 
24-hour segments with each segment overlapping the previous one by 12 hours for drifters 
within the Block Island region.  An example simulation is shown in Figure D-4 where we show 
the 95th percentile region for the final psuedo-drifter location as a gray polygon.  This region was 
estimated by computing the two-dimensional histogram of the pseudo-drifter location, sorting the 
spatial bins based on the number within and then summing over bins until 95 percent of the total 
(1000) was obtained.  Trajectories were only computed for segments in which the starting 
position of the drifter was within the CODAR coverage region.  In the analysis that follows, we 
present statistics for all computed trajectories as well as statistics of a screened subset of 

 
Figure D-4.  Example drifter trajectory within the Block Island CODAR region showing the real 

drifter path over 24 hrs in red and the CODAR predicted position in green, with 
final positions denoted by the circles.  The ensemble of trajectory prediction 
endpoints using the random walk (left) and random flight (right) models are shown 
as blue dots.  The gray polygons denote the region within which 95 percent of the 
drifter final positions lie. 
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trajectory segments for which the end position is also located within the coverage region.  The 
number of comparisons versus the time since the start of the prediction is shown in Figure D-5.  
The decrease in number with time in the Block Island region results from the retrieval and 
redeployment of drifters that left the CODAR domain; thus a number of “short” trajectories (< 
24 hr) is present in the trajectory ensemble. 

 
Figure D-5.  The number of comparisons between predicted and true drifter position versus time 

for no screening (solid lines) and for screening using the 10 percent coverage zone 
(dashed lines) for the Block Island region (left) and New Jersey Shelf region (right).  

D.3.1 Accuracy of Predictions 

The accuracy of a drifter trajectory prediction is measured by the distance between the real 
drifter and the pseudo-drifter.  This was computed for each hour of each 24-hour trajectory 
segment.  The ensemble mean separation and the 95th percentile separation is presented in 
Figure D-6 for all trajectories and for the screened subset.  Mean separations in the two regions 
increase with time in a linear fashion with some indication that separations at short times 
increase at a slightly faster rate.  After 24 hours, mean separation is approximately 7 km (6 km) 
for the Block Island unscreened (screened) ensembles and about 8 km (7 km) for the drifters in 
the New Jersey shelf region.  The 95th percentile separation values are also slightly higher in the 
latter domain, for the unscreened subset, reaching 20 km at the end of 24 hours compared to 
about 18 km for the Block Island drifters.  When drifters leaving the CODAR region are 
eliminated, the 95th percentile separations (24 hr) are about 12 km and 15 km in the two regions 
respectively.  The general decrease in error with screening is not surprising, and is consistent 
with the occurrence of relatively large trajectory prediction error along the outer boundary of the 
CODAR domain where radar velocity errors increase. 
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Figure D-6.  Separation between actual and predicted drifter position as a function of time since 

start of prediction, averaged over all trajectory segments that start within the 
nominal coverage zone for the Block Island region (upper left) and the New Jersey 
shelf region (upper right).  The blue curves show the mean separation (solid line 
and plusses) and the 95th percentile separation (solid line) of the real drifter and the 
predicted position.  The red curves show the mean distance (dashed line and 
plusses) and the 95th percentile distance (dashed line) that the real drifter moved 
over the prediction time.  The lower plots show the same statistical measures 
averaged over all segments that both start and end within the 10 percent coverage 
zone for the Block Island region (lower left) and New Jersey shelf (lower right). 
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To place the CODAR-based trajectory accuracies into context, and to evaluate whether CODAR 
predictions provide an improvement over the so-called persistence forecast (last known position), 
we also show, in Figure D-6, the mean and 95th percentile values of the distance traveled by the 
real drifters.  Drifters released in the Block Island region tend to travel farther than those released 
on the open shelf.  For the unscreened case, the mean (95th percentile) distance traveled after 24 
hours in the Block Island region is 15 km (38 km) compared with about 11 km (23 km) in the 
New Jersey shelf region.  The net result is that drifter locations predicted using CODAR currents 
in the Block Island region are on average approximately 50 percent closer to the real drifter 
position than are the last known positions.  This effect is less pronounced on the New Jersey 
shelf where the mean distance from the predicted position to the real drifter is about 70 percent 
of the distance traveled.  Similar conclusions are reached using the screened drifter subsets, 
although the screening can be seen to sharply reduce the 95th percentile separation value in the 
Block Island region. 

D.3.2 Uncertainty Bounds for Predictions 

Monte-Carlo simulation of drifter trajectories provides an ensemble of final drifter locations that 
can be used to construct a search area.  The search area was defined as the region in which 95 
percent of the pseudo-drifters were located, estimated as discussed above.  At each hour of each 
modeled trajectory, the search area was computed and the position of the real drifter checked to 
see whether it was inside or outside the search area.  The number of real drifters within the 
search area was summed for each hour and divided by the number of trajectories so that the 
fraction ( percent) inside the predicted search area could be computed. 

Comparison of the percent success measure for the two turbulence models tested shows clearly 
that the random flight method is superior in both regions (Figure D-7).  Approximately 80-90 
percent of all drifter search areas using this method enclosed the real drifter position and there 
was little variation with time.  The comparison, using the screened drifter subset is improved 
somewhat, peaking above 90 percent in both regions.  Search areas estimated using the random 
walk model of turbulence are severely underestimated with percent success, for the unscreened 
subset, dropping from about 70-80 percent at a prediction time of 1 hour to 35-60 percent after 
24 hours.  As for the random flight results, the comparison using the screened subset improves 
typically by about 5 percent at all prediction times.  The discrepancy between the search areas 
produced using the two methods is most apparent for the simulations on the New Jersey shelf. 
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Figure D-7.  Comparison of the uncertainty bounds for predicted drifter position using the 

random flight (green) and random walk (red) turbulence models for the Block 
Island region (left) and New Jersey shelf region (right).  The solid curves are 
computed using only those trajectories that both start and end within the 10 
percent coverage zone while the dashed curves are computed based on all 
trajectories that start within the nominal coverage zone.  For each prediction 
time we plot the percent of cases where the actual drifter location at that time 
fell within the estimated 95 percent confidence region. 

D.4 Discussion 

Drifter positions predicted over 24 hours using CODAR surface currents are clearly superior to 
the persistence forecast in estimating the final drifter location. The mean separation between 
predicted and observed drifter location is 50-70% of the separation using the persistence forecast. 
Using currents from a numerical circulation model, Thompson et al. (2003) simulated the 
trajectories of a number of surface drifters on the Scotian shelf. They estimated the 50th 
percentile separation value after 24 hours to be 6 km, which is very similar to the mean 
separation of 6-7 km found in the present study. This suggests that trajectory predictions using 
CODAR surface currents have comparable skill in predicting target trajectories as predictions 
using numerical model currents. 

The search area evaluations can be used to assess the consistency of the turbulence models and 
their associated parameters.  A consistent turbulence model would be expected to provide, for 
instance, a 95 percent confidence region that is successful (that is including the real drifter 
location) 95 percent of the time.  The random flight method provides search areas that enclose 
the real drifter approximately 90 percent of the time, whereas the random walk formulation does 
significantly worse.  This suggests that, with the parameter(s) estimated from the drifters, the 
random flight model is nearly self-consistent while the random walk model is definitely not self-
consistent.  The difference between the random flight success rate and the expected 95 percent 
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suggests a slight underestimate of either the variance or the time scale.  The latter seems the 
more likely candidate here, as we have estimated the turbulent time scale as half the value of the 
first zero crossing of the autocovariance function and not the true integral time scale.  Note that 
evaluation of the integral time scale by integration of the autocovariance to infinite lags is 
problematic in the presence of the quasi-periodic motions evident in the covariance functions of 
Figure D-3. 

The comparison of the effectiveness of random walk and random flight derived drifter dispersion 
is based on the case of equivalent turbulent velocity fluctuation variance.  Alternatively, one 
could specify the diffusion coefficient and either the fluctuation variance or the turbulent time 
scale for the random flight model.  In the case of equivalent Kx, the results of Zambianchi and 
Griffa (1994) show that, for homogeneous, stationary turbulence, the random walk model 
overestimates the particle dispersion for t < Tu.  At times large compared to the turbulent time 
scale, the two models predict that the particle cloud dispersion increases at the same rate but the 
offset introduced by the initial overestimate persists.  For turbulent time scales of 1-3 hours as 
determined in the present study, the difference is 10-20 percent at times after prediction of 12-24 
hr.  One could clearly increase the diffusion coefficient in the random walk case to produce more 
dispersion of the pseudo-drifter cloud, and if the diffusion coefficient were set to the random 
flight value ( σ2Tu) we would expect that the search areas would be at least as effective. 

D.5 Summary and Conclusions 

Comparison of real drifter trajectories and trajectories predicted using CODAR-derived surface 
currents illustrates the value of these data for search and rescue operations.  For prediction times 
of 1-24 hr, the mean (and 95th percentile) distance between the CODAR-predicted position and 
the real position is smaller than the distance traveled by the drifter.  This indicates that 
predictions using CODAR velocities are more accurate than the so-called “persistence” forecast 
(zero drifter velocity).  Although, not shown here, CODAR trajectory predictions are also 
superior to those produced using current CG practice, in which the advective velocity is obtained 
from NOAA tidal current predictions in nearshore waters and a surface current climatology 
offshore (O’Donnell, 2005). 

The statistics of the combination of sub-gridscale velocity and CODAR velocity error that 
contribute to the dispersion of a cloud of pseudo-drifters have been estimated using the 
ensemble-averaged covariance functions of CODAR-drifter velocity differences.  Approximate 
consistency of the estimates of turbulent velocity variance and timescale was demonstrated for 
the random flight turbulence model by evaluation of the resulting search areas, defined as the 
region in which 95 percent of the pseudo-drifters are located.  The random flight search areas 
include the real drifter location in 80-90 percent of cases.  Using the turbulent velocity variance 
estimated from the zero-lag autocovariance function, as for the random flight model, the random 
walk search areas were significantly less effective.  This is due to the fact that the effective 
turbulent time scale in the random walk formulation is dt/2 or 0.5 hr with the time step used in 
this study.  One could expect to achieve satisfactory search area predictions using the random 
walk model by specifying a diffusion coefficient equal to the random flight value. 
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Abstract 
This report summarizes a hierarchy of stochastic particle models, where the object’s position, 
velocity, and acceleration are progressively represented as Markovian processes.  Numerical 
implementation and testing of the first and second order models (random walk and random 
flight) against an analytic solution to the diffusion equation show very good agreement provided 
that 2,000 or more independent simulations are ensemble-averaged.  The random flight model is 
shown to predict smaller search areas than the random walk model, with a long-term reduction in 
the area proportional to the dispersion coefficient times the velocity autocorrelation time scale.  
This offset ramps in immediately after the release, and occurs over the velocity autocorrelation 
time scale.  The particle models were applied to predict the trajectories of seven CG, Self 
Locating Datum Marker Buoys (SLDMB) Argos tracked drifters (Davis like) deployed in three 
clusters: one located in western Block Island Sound, and the other two near the coast and shelf 
break in the New York Bight.  The buoys were deployed for a 35-day period starting on July 27, 
2004.  High frequency coastal radar (CODAR) measurements were collected during the same 
time period by a short range system (50 km range and 5 km resolution) operated by the 
Universities of RI and Connecticut for the Block Island Sound and adjacent shelf area, and by 
the long range system (150 km range, 6 km resolution) operated by Rutgers University for the 
Mid Atlantic Bight.  The motion of the buoys was dominated by a mean southwesterly shelf 
transport and inertial and semi-diurnal tidal oscillations.  A cluster analysis of the very limited 
number of SLDMBs gives dispersion coefficients in the range of 40 to 80 m2/sec.  Analysis of 
the CODAR velocity errors and variances gives values in the range of 40 to 700 m2/sec, with 
velocity autocorrelation time scales in the range of 4 to 7 hours, depending on the velocity 
component, the location, and whether the current record used to determine the autocorrelation 
time scale is de-tided.  Comparison of the velocities derived from the drifters and the radar 
system shows differences comparable to the observed speeds.  Scatter plots for the Block Island 
Sound (Mid Atlantic Bight) show a correlation of less than 0.1 (greater than 0.75) for the 
east/west component and greater than 0.6 (less than 0.4) for the north/south component.  
Correlation coefficients were observed to be much lower in areas where the percent data return 
was below 50 percent.  Statistically independent simulations were performed using SARMAP, a 
search and rescue model, to predict the daylong trajectories at successive (non-overlapping) 
locations along the paths of the seven SLDMBs in the Mid Atlantic Bight.  Model predicted and 
observed locations at the end of one day (typical search and rescue model prediction time scale) 
showed an averaged difference of 9.3 km, with an error in location comparable (about 80 
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percent) to the distance the drifter traveled in one day.  Errors were significantly higher in areas 
where the CODAR data return rates were less than 50 percent.  Estimates of the dispersion 
coefficients necessary as input to the search and rescue model, to ensure that the predicted and 
observed locations of the drifters were within the model predicted search area, were made and 
gave values ranging from 20 to 500 m2/sec, with a median value of 90 m2/sec.  The largest 
dispersion coefficients were associated with areas where the radar data returns were lowest.  The 
various estimates of the dispersion performed (cluster analysis, radar velocity variance, and 
trajectory analysis) gave values consistent with Okubo’s relationship.  Random flight models 
offered no improvement in predictive performance for any of the applications due to the 
substantial uncertainty in estimates of the dispersion coefficient. 

E.1 Introduction 

In planning search and rescue operations, it is common practice to use Lagrangian (particle) 
trajectory models to predict the transport of objects (i.e. vessel, person in the water, life raft, etc.) 
at sea.  The majority of the models employ random walk (Markovian in position) techniques to 
perform these simulations (Breivik et al, 2004; Spaulding and Howlett, 1996; Spaulding and 
Jayko, 1991; ASA, 2003).  The current and wind fields used to force these models are derived 
from hindcasts, nowcasts, and forecasts, depending on the application, and are supplied by 
hydrodynamic and meteorological models or the direct use or interpolation/extrapolation of 
observations.  The movement of the objects is typically approximated as the vector sum of the 
current field plus an empirically based down and cross (leeway) drift in response to wind forcing.  
Allen and Plourde (1999) and Allen (1999) provide empirical leeway drift factors (drift rate, 
down and cross wind, versus wind speed) and the associated uncertainties for 63 separate classes 
of objects.   

The principal goal of search and rescue model simulations is to predict the location and size of 
the area where the lost object is most likely to be found (search area) as a function of time.  
Simulation periods typically extend from several days in the past to 1 or 2 days in the future.  
The search planner is typically faced with making critical assumptions about the initial release 
location and the conditions that existed at that time.  (When and where did the vessel experience 
its initial distress?  Was the vessel upside down?  Does the life raft have a drogue deployed?).  
Stochastic simulations are then performed to predict the location of the search area.  Once the 
simulation is complete and the search area estimated the search planner must determine how to 
allocate search resources (i.e. boats, helicopters, airplanes) to maximize the probability of 
success in the search.  Wind and current induced advective processes can reasonably predict the 
center of the search area.  The size of the search area however, depends on the evolution of the 
ocean turbulence fields and the shear in the mean current, normally parameterized in terms of the 
horizontal dispersion coefficient, over the duration of the simulation.  If estimates of the search 
area are too small, the probability of detecting the object is reduced.  On the other hand, if the 
search area is too large, it is likely that search resources will not be available to cover the search 
area, thus lowering the probability of detection, since some of the area will remain unsearched.  
Application of higher order stochastic models (e.g. random flight, Markovian in both position 
and displacement) offer the potential to reduce the size of the search area because the effective 
dispersion, compared to its random walk counterpart, is reduced.  In spite of the potential 
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improvements, none of the current operational search and rescue models currently employ higher 
order stochastic trajectory models. 

In addition, the rapid development and implementation of high frequency, short and long range 
coastal radar systems for real-time measurements of surface currents provide a new source of 
near-real-time observations of the surface current field that could be used as input to search and 
rescue models.  These systems have the potential of providing high spatial (1.5 to 6 km) and 
temporal (1 to 3 hr) resolution observations of surface current fields over ranges of 50 to 150 km.  
In addition, these systems can provide estimates of the surface velocity variances that might be 
exploited to improve estimates of the effective turbulent dispersion, and hence improve 
predictions of the size of the search area. 

The first objective of this paper is to summarize a hierarchy of stochastic particle models from 
the literature that might be used in search and rescue models to predict the search area.  The 
second objective is to apply random walk and flight models, driven by surface current data 
derived from short- and long-range high frequency radar systems, to understand the transport and 
dispersion of seven, 7/10 scale Davis (1985) like surface drifters deployed in Block Island Sound 
and the Mid Atlantic Bight by the CG over a 35-day period in July and August, 2004.  Integral to 
both objectives is an assessment of the dispersion characteristics and autocorrelation time of the 
velocity variances of these coastal waters. 

Section 2 provides a summary of the hierarchy of stochastic particle models, drawn from the 
literature on Lagrangian dynamics in the ocean and atmosphere, which might be used in search 
and rescue models.  Numerical implementation and testing of the models against an analytic 
solution to the diffusion equation are also covered in this section.  Application of random walk 
and flight models to the surface drifter data to estimate the turbulent dispersion and to assess 
their predictive performance is provided in Section 3.  Anticipating the use of high frequency 
radar surface current data to predict the movement of surface drifters, Section 4 provides a 
comparison of velocities derived from drifter trajectories with corresponding data collected by 
the high frequency radar.  Section 5 provides the associated estimates of dispersion coefficients 
based on the radar data.  Predictions of the drifter trajectories were then made using a state of the 
art, search and rescue model (SARMAP; ASA, 2003), forced by the observed high frequency 
radar current fields (Section 6).  Differences between the model predictions and observations 
were used to assess the dispersion coefficient required in SARMAP to ensure that the model 
predicted search area included the observed location of the drifters.  Study conclusions are 
presented in Section 7 and references in Section 8. 

E.2 Hierarchy of stochastic particle models 

The large number of scales participating in the motion makes modeling of the movement of 
particles (search and rescue objects) in the ocean complicated.  For the search and rescue 
problem, these range from continental shelf to molecular scales.  Since methods are not available 
to solve for all scales simultaneously, it is common practice (Taylor, 1921) to divide the flow 
into a mean field representing the large-scale flows, U, and turbulence representing the smaller 
scale flows (u’).   



 

 E-4

Following the work of Griffa (1996), Griffa et al, (1995), and Berloff and McWilliams (2002), it 
is proposed that the trajectories of objects drifting at sea be modeled by a hierarchy of 
progressively more complicated Markovian, stochastic particle models.  These models are simple 
examples of the generalized, stochastic, nonlinear, Langevin equations for arbitrary dimensions 
(Risken, 1989).  Markovian models are typically used to describe processes whose conditional 
probability density at time t n is solely dependent on values at an earlier time t n-1.   They have 
been shown to be well suited for modeling the movement of drifters in the ocean (Dutkiewicz et 
al, 1994; Griffa, 1996; Bauer et al, 1998, 2002; Mariano et al, 2002).  A complete derivation of 
the hierarchy of models is provided in appendices to Berloff and McWilliams (2002). 

The lowest level model (Model 1, alternately referred to as the zeroth order Markov model) 
assumes that the particle position, x, is a Markov variable.  This model assumes that the scales of 
acceleration and velocity are infinitesimal.  This model can be shown to give solutions to the 
advective-diffusion equation (Csanady, 1973) and is widely known as a “random walk” model.  
The model is simple to implement and widely used in oceanographic studies. Model 1 is used in 
most search and rescue models to make trajectory predictions (Breivik et al, 2004; Spaulding and 
Howlett, 1996; Spaulding and Jayko, 1991; ASA, 2003).  Model 2, often referred to as a 
“random flight” model (Thomson, 1986; van Dop et al, 1985), assumes that both the position, x, 
and the velocity, u, are jointly Markovian.  The scale of acceleration is once again assumed 
infinitesimal.  This model is well-suited to describe meso-scale particle motions in the upper 
ocean (Griffa, 1996).  Finally, Model 3 assumes x, u, and a are jointly Markovian (Sawford, 
(1991), Pope, (1994)).  This model is typically used when particles display strong looping or 
wave-like motion (Mariano et al, 2002).  Berloff and McWilliams (2002) extend this internally 
consistent hierarchy to equations for the hyper-acceleration or the time derivative of the 
acceleration.  This model is most useful if the particles move in vortex or ring-like structures 
with very long lives.  This model is not considered here because it is well beyond the scope of 
the current state of practice, requires extensive supporting data, and is not justified since the 
potential areas of application do not have particle trajectories that display strong wave or looping 
like movements over the typical forecast periods. 

The governing equations for each of the three Markovian models are presented below.  Only one 
component is provided, as the other is analogous.  The following assumptions have been made 
for the present application. 

1. The velocity field is two-dimensional.  This assumption is a natural result of focusing on 
the transport of particles floating at or very near the sea surface. 

2. Models describe the motion of single, independent particles released in the flow field; the 
movements of individual particles are not correlated with each other. 

3. The particles are dynamically passive (i.e. they don’t affect the fluid dynamic motion). 
4. The turbulence velocity is homogenous in space and stationary in time.  For the present 

application, it is assumed that temporal and spatial variations are accounted for by the 
temporally and spatially varying flow fields provided by the high frequency surface radar 
systems (horizontal spatial resolution on the order of 1 to 6 km and a temporal resolution 
of 1 to 3 hrs) or hydrodynamic models. 

5. The two components of velocity are independent (i.e. spatial correlations of the velocity 
are zero). 

6. Random forcing is Gaussian (or normal). 
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E.2.1 Model 1:  Markovian x  

The governing equation for particle motion, in incremental form, for this model is 

dx = Udt + dx’  (1) 

dx’= K ½ dw (2) 

with initial conditions x(t=0) = 0. dx is the total particle displacement during time interval dt, U 
(x, t) is the mean flow, dx’ is the displacement due to the turbulent velocity field,  and dw(t) is a 
random increment from a normal distribution (zero mean and second order moment of 2dt).  

K is the turbulent diffusion coefficient and is given 

K= σu
2T (3) 

Where σu
2 is the velocity variance (cm2/sec2) and T is the turbulence time scale.  In order for 

σu
2= <(dx’/dt) 2>, T must be equal to dt/2. 

Griffa (1996) presents the Fokker-Planck equation associated with Model 1 and shows that it 
provides a solution to the well-known, advective diffusion equation for the average concentration 
of a constituent, where K is the eddy diffusion coefficient. 

Equation 1 shows that the movement of a particle is a result of contributions from the mean flow 
and turbulence.  The latter is represented as a random stochastic process, uncorrelated from one 
time to the next.  The particle hence receives a random pulse or input due to actions of the 
turbulence field, but retains no memory of the prior turbulent impulse it experienced at the earlier 
time step.  For this model T, and hence dt, are small compared with temporal variations of U and 
with the actual time t.  This model is therefore applicable for times when t >> T. 

The dispersion, or mean squared separation of particles, S1
2 = <(x- <x>)2>, where the < > 

indicates the mean value, for this model is given by 

S1
2 = 2Kt (4) 

where the subscript 1 refers to Model 1.  The mean dispersion of particles is predicted to grow 
linearly with time, in agreement with the solution to the advective diffusion equation (Csanady, 
1973). 

E.2.2 Model 2: Joint Markovian x and u 

The incremental equations for particle motion for Model 2 are given by  

dx = (U+u)dt (5) 

du = -(1/T)udt  + K* ½ dw* (6) 
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the initial conditions are x(0) = 0 and u(0) = û, where û is drawn from a Gaussian distribution 
with a zero mean and variance of σu

2, dw* is a random increment with the same statistical 
characteristics as in Model 1 (Equation 2), and T is the turbulent time scale.  

K* is the diffusion coefficient and can be expressed in terms of the velocity variance and the 
Model 1 diffusion coefficient, K, by 

K* = σu
2/T = K/T2 (7) 

Model 2 (Equation 5) shows that perturbations of the velocity field at each time increment are 
composed of two components, a random impulse (dw*) and a loss of velocity (momentum)  
(-(1/T) u dt) as a result of the memory of the velocity from the prior time step.  A particle hence 
retains a memory of its initial turbulent velocity over a finite time of order T. 

T is typically derived from the velocity autocorrelation function, expressed as 

R(τ) = σu -2<u(t)u(t+τ)> (8) 

where τ is the time lag.  Numerous applications have shown that the autocorrelation function 
decays exponentially for meso-scale oceanographic problems (see Griffa, 1996) and hence R can 
be approximated by 

R(τ) = e –τ/T (9) 

where T is the integral time scale of the autocorrelation function. 

Griffa (1996) and van Dop et al, (1985) present the Fokker-Planck equation for Model 2 and 
show that the equation includes a term that constitutes the memory of the velocity for a finite 
period of time. 

Model 2 can represent transient processes with times t < T; as well as those where t > T, as in 
Model 1.  Model 2 fails however at very small times since the acceleration has an infinitesimally 
small scale and Equation 5 is discontinuous at each step.  

For the case of constant K and T, Equation 6 has an exact solution (van Dop et al, 1985). 

The particle dispersion for Model 2, S2
2, for this case is given by  

S2
2 = 2Kt- 2KT(1-e – t/T) (10) 

Equation 10 shows that S2
2 has an exponential like shape.  This solution also shows that the 

velocity autocorrelation must have the exponential form given by Equation 9.  Comparing S1 and 
S2, it is noted that Model 2 predicts a lower dispersion than Model 1 for t < T.  The dispersion 
approaches that given by Model 1 for large values of t; however there is a permanent offset, with 
a value of 2KT. 
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Model 3: Joint Markovian x, u, and a 

The governing equations for Model 3, written in incremental form, are 

dx = (U+u)dt (11) 

du = adt (12) 

da = -(1+ a Ta/T)dt/ Ta –udt/(T Ta) + K**1/2dw** (13) 

where  

K** = (1/Ta)(σa
2(1+Ta/T)) (14) 

and   

σ a2
 =  σ u2/( T Ta) (15) 

the initial conditions are x(0) = 0, u (0) = û, a (0) = â where the values for û and â are obtained 
from a Gaussian distribution, with zero mean and variances of σu

2 and σ2
a, respectively.  K** is 

the diffusion coefficient, σ2
a is the acceleration variance, and dw ** is a random increment with 

the same statistical characteristics as dw and dw* in Equations 2 and 5, respectively.  Model 3 
has two time scales, T and Ta, representing the velocity and acceleration time scales, 
respectively. 

Assuming that the velocity and acceleration autocorrelations can be approximated by exponential 
relationships results in  

R(τ) = (e –τ/T –(Ta/T) e –τ/Ta)/(1-Ta/T) (16) 

for the velocity autocorrelation function.  

To understand the physical behavior of Model 3, as represented by Equations 11 - 13, let us 
assume there is a complete separation of the temporal scales of velocity and acceleration such 
that Ta << T. For long time lags (τ >> Ta) R (τ) reduces to Equation 9 (Model 2).  For time lags 
on the order of Ta, R has a quadratic behavior in the vicinity of τ = 0.  The autocorrelation for 
acceleration has an approximate exponential dependence for short time lags and is given by 

Ra(τ) = e –τ/Ta (17) 

E.2.3 Extension to inhomogeneous and non-stationary turbulence 

When turbulent parameters in the above models are spatially or temporally varying, the basic 
Langevin equations given above are not strictly correct.  Errors manifest themselves in the form 
of particle distributions that are uncharacteristically high in areas of low turbulence.  This 
problem has proven particularly important in particle transport problems where the 
temporal/spatial variations in the turbulence levels are strong.  The typical strategy used to 
address this problem is the addition of a drift correction term to the velocity for Model 2 and to 
the velocity and acceleration for Model 3 (Berloff and McWilliams, 2002; Thomson, 1987; 
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Sawford and Yeung, 2000; Legg and Raupach, 1982).  This term typically involves the spatial 
gradients of the velocity and acceleration variances.  As an example, the simplest correction for 
Model 2, to account for inhomogeneous and non-stationary turbulence, is to add the following 
term to the right-hand side of Equation 6. 

  dσ2
u dt 

  dx 
 
This term introduces a mean acceleration acting on the particles directed toward the regions of 
higher variance.  It serves to counterbalance the tendency of particles to concentrate in areas of 
lower variance.  This adjustment ensures that particle distributions are well mixed. 

Data collected by the high frequency radar system in the Block Island Sound study area indicate 
values of σ2

u ranging from 100 to 400 cm2/sec2 with a mean value of about 100 cm2/sec2 (Ullman 
et al, 2003).  For the present study, mean variances in the range of 350 to 550 cm2/sec2 were 
observed in Block Island Sound and the Mid Atlantic Bight.  The larger values of variance are 
observed at the outer edge of the radar footprint and are a result of the poor geometric resolution 
in the area, the reduced radial coverage at long ranges, and lower data recovery rates.  The 
velocity variance however, is typically smoothly-varying over the central portion of the footprint.  
Given this situation, it will be assumed, as a first approximation, that inhomogeneous and non-
stationary effects can be ignored. 

E.2.4 Numerical implementation 

The procedure used to solve the governing equations presented is provided below.  Since the 
method is the same for each model, the approach for Model 2 is presented, because it illustrates 
all the key steps and is less complicated than Model 3. 

The strategy is to solve Equations 5 and 6 using a Monte Carlo technique.  In this approach 
simulations are performed for discrete particles and the results of multiple simulations are 
ensemble-averaged to predict the advection and dispersion of the particles as a function of time.  

Equations 5 and 6 are expanded in discrete, incremental form as  

x n+1
i+1, j+1 = x i, j n + (U n 

i, j + un i, j) ∆t (18) 

u n+1 i +1 , j+1 =  u n i  , j - (1/T) u n i  , j  ∆t  + (2 σu 2 /T) ½ wn * (19) 

 
where the superscript, n, refers to the time, and is stepped in increments of ∆t.  The subscripts i 
and j refer to the two-dimensional horizontal location of the velocity.  The location of the particle 
at n+1, x n+1

i+1, j+1, is given subscript i+1, j+1 to note that the particle will be moved horizontally 
to a new position during the time increment, ∆t.  U is the mean velocity at the location (i, j) of 
the particle at time n and u is the turbulent fluctuating component of the velocity.  U can be 
obtained directly from the output of the radar as the mean value of the velocity for each grid. σu 2 
is the variance of the turbulent velocity.  This value is available at each grid point from the radar 
data.  It can be averaged over time at one grid point or all grid points can be averaged over both 
time and space.  T is the integral time scale from the autocorrelation function (Equation 8) 
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assuming that the function is exponential (Equation 9).  T is available either as an average value 
over the radar footprint or for each observation point.  Finally, wn * is a random increment from 
a normal distribution with zero mean and second order moment of 2dt.  Equations 18 and 19 are 
the simplest approximations to time stepping of the particle position.  More sophisticated 
integration procedures can be used, including predictor corrector and 4th order Runge-Kutta 
methods (Press et al, 1992).  These methods become necessary if the time steps of the simulation 
become sufficiently large so that a particle is moved more than one grid in one time step. 

In the computation cycle, one particle is selected and Equation 18 is solved to determine the 
location of that particle at time n+1.  For the first step, xn is assumed to be zero, or some other 
prescribed value, and un i, j is selected at random from a normal distribution of velocity variance.  
Equation 19 is then solved to determine the value of the turbulent velocity component at n +1.  In 
the next time step, this value is substituted in Equation 18 for un i, j.  This sequence of 
calculations is repeated to predict the position of the particle in time.  Similar simulations are 
performed for each additional particle.  Finally, ensemble averages are computed using the 
results of numerous particle simulations to predict the mean position and dispersion of the 
particles at each time step. 

In the present application, estimates of mean currents and associated estimates of the velocity 
fluctuations are available from the radar system at increments of 1 to 3 hours.  The 
autocorrelation times are estimated to be on the order of 4 to 6 hrs. Simulation times are typically 
one to several days.  The grid spacing for the Block Island Sound CODAR system is 
approximately 1.6 km and about 6 km for the Mid Atlantic Bight system.  For a mean grid size 
of 1.6 km (6 km) and a peak current of 50 cm/sec, 0.89 hrs (3.3 hrs) are required for a particle to 
transit one grid.  To take maximum advantage of the temporal variations of the data, the time 
step should be less than 1 hour. In addition, to ensure that the particles won’t travel more than 
one grid in one time step, the time step should be less than 0.989 hrs for the Block Island Sound 
grid.  We have therefore selected a time step of 15 minutes for all simulations.  This time step 
ensures that particles will not transit more than one grid in one time step and allows us to take 
maximum advantage of all available data.  This time step is also substantially less than the 
integral time scale of the autocorrelation function and hence allows us to evaluate any 
improvement in performance from considering the autocorrelation of the velocity field. 

The present work is restricted to the application of Models 1 and 2 to predict the trajectories of 
particles.  Application of Model 3 is premature and awaits the results of the evaluation of Models 
1 and 2. 

E.2.5 Model testing  

To verify that the numerical solutions for both Models 1 and 2 have been implemented correctly, 
simulations with fixed parameters for cases with available analytic solutions were performed.  
Model predictions of the mean squared separation of particles, S2 = <(x- <x>)2> versus time 
were compared with the corresponding analytic solutions.  

For the cases studied, the mean flow was set to zero (U = 0).  The no flow case was selected 
because the only difference between Models 1 and 2 is in their treatment of the turbulent 
transport term.  Simulations were performed for a period of 5 days with a time step, dt = 15 
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minutes (900 seconds).  The diffusion coefficient (Model 1) was assumed at K = 1 m2/sec (or σu
2 

= 2K/dt = 22.2 cm2/sec2). 

E.2.5.1 Model 1:  Markovian x 
Six simulations were performed increasing the number of particles used in the simulation from 
100 to 50,000 (100, 500, 1000, 2000, 5000, and 50,000) and using the model parameters above.  
Ensemble-averaged model predictions of the mean displacement, S1

2 = <(x- <x>)2> are plotted 
versus time and against the analytic solution in Figure E-1.  Only simulations for the 500, 5000, 
and 50,000 cases are shown for clarity in the figures.  For Model-1, the analytic solution of the 
mean squared separation of particles is given by Equation 4, S1

2  = 2Kt.  Figures E-2 and E-3 
show the percent error and cumulative error squared versus time, respectively, for the 
simulations shown in Figure E-1.  The numerical solution approaches its analytic counterpart as 
the number of particles used in the simulation increases.  Maximum errors for the 500 particle 
case are about 10 percent and decline to less than 1 percent for 50,000 particles (Figure E-2).  
The cumulative errors show similar behavior.  Errors are observed to decrease rapidly with the 
initial increase in number of particles, and then more slowly as the number of particles increases.  

 
Figure E-1.  Time series of the mean squared separation obtained using Model 1.  S_xxx, xxx 

denotes the number of particles used. 
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Figure E-2.  Time series of percent error for Model 1.  E_xxx, xxx denotes the number of 

particles used. 

 

 
 

Figure E-3.  Time series of the cumulative squared error for Model 1.  E2_xxx, xxx denotes the 
number of particles used. 
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E.2.5.2 Model 2: Joint Markovian x and u 
Simulations, similar to those above, were repeated using Model 2, employing the same 
parameters and assuming an autocorrelation time scale of 1 day.  The analytic solution for the 
mean squared separation of particles versus time is given by Equation 10, S2

2  = 2Kt - 2KT  
(1-e – t/T).  Figure E-4 shows S2

2 versus time for the model predicted (for varying number of 
particles) and analytic solution for this case.  Also shown for reference is the analytic solution for 
Model 1.  Figures E-4 and E-5 provide the percent error and cumulative error squared versus 
time, respectively, for the simulations shown in Figure E-3.  Model performance, as a function of 
number of particles, shows similar trends as in Model 1, with the exception that the high 
frequency variations in the errors are dramatically reduced.  This is a direct result of the reduced 
contribution of the random component to turbulent velocity fluctuations inherent in the random 
flight model.  Using the random flight model clearly shows a reduction in the dispersion of 
particles compared to the random walk model.  This reduction is observed over a time scale 
equivalent to the autocorrelation time.  The two models show the same slope of the mean 
squared separation distance with time after the several days of simulation.  Implementation of the 
random flight model results in an effective reduction (offset) of S2

2 of 2KT. 

Results from simulations using both Models 1 and 2 indicate that several thousand particles are 
required to obtain error levels below 5 percent.  Error levels with 500 particles are on the order 
of 7.5 percent.  Predictive performance can be improved beyond the 5 percent level but only by 
the use of a substantially increased number of particles, which adversely impacts computational 
times. 

 
Figure E-4.  Time series of the mean squared separation obtained from Model 2.  S_xxx, xxx 

denotes the number of particles used.  The analytic solutions for Models 1 and 2 
are shown for comparison.  The vertical line represents the turbulent 
autocorrelation time scale (1 day).  
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Figure E-5.  Time series of percent error for the Model 2.  E_xxx, xxx denotes the number of 

particles used. 

 

 
Figure E-6.  Time series of cumulative squared error for Model 2.  E2_xxx, xxx denotes the 

number of particles used. 
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E.2.5.3. Parametric experiments 
Parametric simulations were performed varying the diffusion coefficient (K) (1, 10, and 20 
m2/sec (corresponding to σu

2  = 22, 222, and 444 cm2/sec2), respectively for a 15 min. time step) 
and turbulent time scale (T) (0.5, 1, and 10 days) to show that the model is capable of accurate 
predictions over the range of K and T values typically observed in coastal waters.  

Time series predictions of the mean squared separation, obtained from Model 1 and Model 2, for 
K= 1, 10, and 20 m2/sec, together with corresponding analytic solutions, are shown in 
Figure E-7.  The turbulent time scale (T) for Model 2 was maintained at 1 day.  All simulations 
used 5,000 particles.  Numerical model predictions are seen to be in very good agreement with 
the corresponding analytic solutions.  The model performance declines slightly as the diffusion 
coefficient increases.  The offset (2KT) between Model 1 and 2 predictions is clearly shown and 
increases linearly with the value of the diffusion coefficient selected.  

The sensitivity of Model 2 predictions to variations in the autocorrelation time scale (T = 0.5, 1 
and 10 days) is shown in Figure E-8. A diffusion coefficient of K = 1 m2/sec and 5,000 particles 
were used in these simulations.  Once again, model predictions are in very good agreement with 
the analytic solution.  The offset increases linearly with the value of the autocorrelation time 
scale, as predicted by the analytic solution. 

 
Figure E-7.  Time series of the mean squared separation obtained for K= 1, 10, and 20 m2/sec, 

using Models 1 and 2 (T= 1 day) and 5,000 particles.  The analytic solutions for 
each case are also shown. 
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Figure E-8.  Time series of the mean squared separation obtained for Model 2 (T= 0.5, 1, and 10 

days), using K=1 m2/sec and 5000 particles. 

 
Some interesting insight can be gained on the application of Model 2 (random flight), relative to 
Model 1(random walk), for the search and rescue problem by studying the analytic solutions and 
assuming that the model parameters are constant.  Specifically, we note that: 

 
1. The predicted mean location of a drifting objective versus time is independent of the 

model selected, since the advective field and the associated integration to obtain particle 
position is exactly the same in both models. 

2. Model 2 predicts a reduction in the effective search area (measured by S2), relative to 
Model 1, beginning immediately after the initiation of the simulation and continuing with 
time.  The difference in area becomes constant and scales as KT.  For t >>T, the area 
ratio (Ra) of Model 2 to Model 1 can be approximated by Ra = 1- T/t.  The ratio of search 
area between the two hence decreases as time increases.  As an example for T = 2 days, 
Ra is 0.6 at t = 5 days; 0.8 at 10 days; and 0.1 at 20 days. 

 

E.3 Application of random walk and flight models to SDLMB drifter 
trajectories 

The CG deployed three clusters of three SLDMBs:  one set in Block Island Sound and the other 
two sets at the northern end of the Mid Atlantic Bight, in the general vicinity of the New York 
Bight.  SLDMBs are air deployable, 7/10 size, Davis (1985) like surface drifters (70 cm draft, 1 
m width) that are GPS tracked every half hour by the Argos satellite system.  Table E-1 provides 
the drifter serial number, deployment time (EST) and location, and the cluster identifier name.  



 

 E-16

All drifters were released on July 27, 2004.  Figures E-9a and b show the drifter trajectories for 
the duration of the 35-day experiment for the Block Island Sound and Mid Atlantic Bight 
releases, respectively. 

Table E-1.  Summary of SLDMBs deployed on July 27, 2004 by CG. 
Serial #  Time  Position Cluster 

43049  0830  N39-55.98 W72-40.28 no data 
43061  0834  N39-55.98 W72-40.28 AB_B (five days) 
43062  0839  N39-55.98 W72-40.28 AB_B 
38867  0855  N40-17.62 W73-34.40 no data 
43057  0900  N40-17.62 W73-34.40 AB_A 
43060  0902  N40-17.62 W73-34.40 AB_A 
32779  1009  N41-08.31 W71-44.72 RI_A 
32773  1011  N41-08.31 W71-44.72 RI_A 
32776  1014  N41-08.31 W71-44.72 RI_A 

 
Drifters 43049 and 38867 ceased operation immediately after deployment and provided no useful 
data.  43061 provided data for the first 5 days only. 

During the 35-day period in which the drifters were tracked, measurements of the near-sea 
surface currents were made by a three-station, short-range CODAR system covering the western 
end of Block Island Sound and the adjacent area south of Montauk Point and operated by the 
Universities of Rhode Island and Connecticut (Ullman et al, 2003; Ullman et al, 2004; Codiga 
and Rear, 2004) and by a two-station, long-range CODAR system operated by Rutgers 
University (Josh Kohut) for the Mid Atlantic Bight.  The short-range system has a resolution of 
about 1.5 km and a range of 50 km (Ullman et al, 2003), while the long-range system has a 
resolution of 6 km and a range of 150 km (Josh Kohut).  

All data were processed by the CODAR data analysis program, and provided hourly observations 
of the mean surface current and corresponding variances for each grid cell.  The quality control 
protocol removed data where the signal to noise ratio was less than 5 dB or data for which the 
radial lines used to assemble the velocity estimates crossed at angles of 30 degrees (150 degrees) 
or smaller (larger).  Plots of the percent data recovery (above and below 50 percent) over the 
experimental period are provided in Figure E-9.  Recovery rates were generally good for the 
Block Island Sound system covering most of the radar footprint.  Recovery rates for the Mid 
Atlantic Bight were much lower, with about half of the radar footprint giving less than 50 
percent data returns.  The Mid Atlantic Bight measurements showed significant diurnal 
variability reflecting the impacts of nighttime atmospheric conditions on the radar performance. 

As a first step in the analysis, the three sets of drifter data were used to estimate the effective 
dispersion of the drifters over time.  The three sets of cluster releases are referred to as: 

 
 RI_A:   3 buoys in Block Island Sound  
 AB_A:  2 buoys near shore New York Bight 
 AB_B:  2 buoys offshore New York Bight 
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Wind time histories at the National Oceanic & Atmospheric Administration (NOAA)/National 
Data Buoy Center (NBDC) marine buoys on the Mid Atlantic shelf (44017, 44025), in the New 
York Bight Apex (ALSN6), and the entrance to Buzzard’s Bay (BUZM3), are given in 
Figure E-10.  Winds were spatially coherent throughout the study area, with mean speeds in the 
range of 4 to 6 m/sec.   

All three sets of SLDMBs drifted in a southwesterly direction (generally shore parallel).  The 
mean drift rates (Table E-2) were in the range of 5 to 8 km/day.  The speeds were highly variable 
however, with standard deviations on the order of 60 percent of the average values.  Maximum 
rates were 14 to 18 km/day.  There was no statistically significant correlation between the wind 
and drifter speed, even in the wind-forced band.  The impact of the predominantly semi-diurnal 
tidal currents is evident in all records, with excursions of about 2 km/day and oriented at 35/215 
degrees in the Mid Atlantic Bight.  The tidal currents are substantially stronger, with speeds 
above 50 cm/sec and oriented in a north/south direction on the southern boundary of Block 
Island Sound. Inertial oscillations (18.6 to 19 hour periods) are prevalent in the Mid Atlantic 
Bight drifter paths, as well as a lower frequency, large-scale looping motion.  This looping 
motion is larger for cluster AB_B than AB_A. 

Table E-2.  Minimum, average, maximum, and standard deviation of SLDMB drifter speeds for 
each drifter. 

SLDMB  
ID Number 

Minimum 
(km/day) 

Average 
(km/day) 

Maximum
(km/day) 

Standard 
Deviation 
(km/day) 

32773 0.2 6.3 15.6 3.9 
32776 1.4 6.9 18.4 4.6 
32779 0.5 6.3 14.2 4.0 
43057 0.2 4.9 14.6 3.2 
43060 0.9 5.1 12.2 2.9 
43061 0.3 7.8 18.3 4.1 
43062 (Not examined due to short record)   
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Figure E-9a.  Trajectories of SLDMB drifters released in the Block Island Sound area.  The 

drifter numbers are noted.  The contours show the greater than 50 percent (light 
gray) and less than 50 percent (dark gray) data returns for the Universities of 
Rhode Island and Connecticut CODAR systems. 
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Figure E-9b.  Trajectories of SLDMB drifters released in the Mid Atlantic Bight area.  The 

drifter numbers are noted.  The contours show the greater than 50 percent (light 
gray) and less than 50 percent (dark gray) data returns for the Rutgers University 
long range CODAR system. 

 
Power spectra for the wind speed (buoy 44025) (upper panel) and the east/west and north/south 
components of the currents, based on data from SLDMB 43057, at CODAR cell 349 (location: 
73.88669 Longitude, 39.33987 Latitude, cell with highest data return in MAB), and at the 
CODAR cells along the trajectory of 43057 (lower panels), are shown in Figure E-11a.  A more 
detailed version of the power spectra, noting the principal diurnal, semi-diurnal and over-tide 
components is provided in Figure E-11b for buoy 43057 and its companion in cluster AB_A, 
43061.  The buoy data show that the most energy is found at the inertial oscillation period, 
followed by that in the semi-diurnal tidal band.  Energies in the tidal harmonics and at periods 
typical of wind forcing (several days) (Figure E-10) are substantially smaller.  The energy at the 



 

 E-20

inertial oscillation period, based on the SLDMB and the corresponding CODAR data at the same 
locations, shows that the CODAR-based estimates have lower energies in the north/south 
direction than in the east/west direction, while they are comparable in the SLDMB observations.  
The CODAR measurements, hence, under represent the energy at the inertial oscillation period 
in the north/south direction.  The energies at the semidiurnal tidal band, however, are 
comparable. 

 
Figure E-10.  Wind time series for July 27 to September 1, 2004 at NOAA/NBDC stations 

44017, BUZM3, 44025, and ALSN6. 
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Figure E-11a.  Power spectra of the wind (buoy 44025) and east/west and north/south 

components of the currents derived from the SLDMB 43057, from CODAR 
grid cell 349, and from CODAR along the trajectory of SLDMB 43057. 
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Figure E-11b.  Power spectra for the east/west and north/south components of the currents 

derived from the SLDMB 43057 and 43061.  The principal diurnal, semi-
diurnal and harmonic tidal frequencies are noted. 

 
For each cluster, the mean squared separation distances, S2, were estimated by 

S2 (m2)  =  (Drifter location - Center of the cluster) 2 / (Number of drifters) 

Figure E-12 shows the mean squared separation distance (log scale) versus time for each cluster 
of drifters.  Drifters released at both AB_A and AB_B stayed remarkably close together for the 
first 15 days, with separation variances of less than 1.0E6 to 5.0E6 m2 (distances of 1 to 2.3 km).  
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Cluster AB_A started to disperse significantly after 25 days.  The mean squared separation 
distance increased progressively throughout the experiment for cluster RI_A. 

Assuming that the mean squared separation was approximated by either a random walk 
(Equation 4) or a random flight model (Equation 10), estimates of the dispersion coefficients 
were made for each cluster. 

 

Figure E-12.  Mean squared separation distance squared versus time for each cluster of drifters. 

 
Figures E-13a and b show the mean squared separation distance versus time for cluster RI-A and 
AB_B, respectively.  Results for cluster AB_B are not provided, since one drifter only provided 
data for the first 5 days of the experiment.  Lower, mid, and upper bound fits of the random walk 
model to the data were made and resulted in the dispersion values shown in Figure E-13 and 
Table E-3.  Restricting attention to the median values, cluster RI_A gave a dispersion coefficient 
of 40 m2/sec, consistent with what one might expect on the shelf.  The values for AB_A (85 
m2/sec) were about twice those for RI_A.  A closer look at the mean squared separation distance 
for AB_A, however, shows that the dispersion estimate is dominated by the last 10 days of the 
record.  If attention is restricted to the initial five days for AB_A and AB_B (Figure E-14), the 
dispersion coefficient is very low, on the order of 0.3 m2/sec. 
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Table E-3.  Dispersion values estimated from cluster separation statistics assuming a random 
walk model.   

Dispersion coefficient (m2/sec) 
Cluster 

RI_A AB_A AB_A & AB_B* 
Lower: 17 20 0.1 
Median: 40 85 0.3 
Upper bound: 110  185 0.75 

 
For comparison to the values in Table E-3, Okubo’s (1971) 4/3rds power law gives dispersion 
coefficients in the range of 20 to 200 m2/sec for time scales from 5 to 30 days.  These values are 
broadly consistent with, but larger than, those observed by the cluster analysis.  Elliott et al, 
(1997) have recently analyzed data from short-term (less than 2 days) dye dispersion studies in 
coastal and estuarine waters, and find that the dispersion coefficient scales linearly with the 
current speed for these releases.  For peak tidal current speeds in the range of 40 to 60 cm/sec for 
the present study areas, dispersion coefficients would be approximately 0.4 to 0.6 m2/sec.  

It is impossible to reconcile the differences in estimates of the dispersion coefficient from the 
cluster analysis given the very limited drifter data available.  

 
Figure E-13a.  Mean squared separation distance versus time for cluster RI_A.  Also shown are 

lower, mid and upper bound fits of random walk and random flight models with 
the parameter values given in the legend.  
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Figure E-13b.  Mean squared separation distance versus time for cluster AB_A.  Also shown are 

lower, mid, and upper bound fits of random walk and random flight models, with 
the parameter values given in the legend.  
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Figure E-14.  Mean squared separation distance versus time for cluster AB_A and AB-B 

restricted to the first 5 days of the experiment.  Also shown are lower, mid, 
and upper bound fits of a random walk model to the data, with the values of 
the dispersion coefficient given in the legend.  

 
In order to apply the random flight model to the data, an estimate of the autocorrelation time 
scale is required.  The autocorrelation function versus lag time for the east/west and north/south 
components of the velocity was estimated at that location with the largest number and best 
quality data return in the Mid Atlantic Bight footprint (Station 349, 73.88669 Longitude 
39.33987 Latitude).  The autocorrelation for the two components are shown in Figures E-15a and 
b.  The analysis was performed using the hourly sampled CODAR data and with a corresponding 
de-tided data set where the eight largest tidal harmonics were removed.  The tidal currents were 
dominated by the M2, S2, and N2 constituents, with mean speeds of 11.3, 2.66 and 2.3 cm/sec and 
directions of 35, 57, and 28.8 degrees, respectively.  Assuming that the autocorrelation function 
can be represented by an exponential relationship (Equation 9), the autocorrelation time scale 
(1/e folding time) is 3.5 hrs for the original record and 6.5 hrs for the de-tided record.  Even 
when the de-tided record is used, the autocorrelation function shows evidence of a periodic 
variation.  Estimates were made of the dispersion coefficient using Equation 3, with T based on 
the autocorrelation time scale.  The east and north components gave dispersion coefficients of 
170 and 106 m2/sec, respectively, for the original record and 187 and 130 m2/sec for the de-tided 
record.  These values are comparable to those based on the analysis of drifter cluster AB_A 
above.  

Estimates of the dispersion coefficient can also be made by directly integrating the 
autocorrelation function (Batchelor, 1953).  In the present case, the estimate proved to be very 
sensitive to the length of the integration time since the autocorrelation function is quite variable 
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at long lag times (Figure E-15).  This is particularly true for the original record, which is strongly 
impacted by tidal variations.  Ojo and Bonner (2000) had a similar experience in deriving 
dispersion coefficients from HF radar data collected in Corpus Christi and Matagorda Bay, 
Texas.  The mean value of their dispersion coefficients was in the range of 1.5 to 4.5 m2/sec, 
while peak values reached several thousand. 

 
Figure E-15a.  Autocorrelation of the east component of the velocity versus lag time for the 

original CODAR and de-tided CODAR data from location 349 in the Mid 
Atlantic Bight.  Also shown are estimates of the dispersion coefficient based on 
the assumption that Equation 10 can represent the autocorrelation function. 
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Figure E-15b.  Autocorrelation of the north component of the velocity versus lag time for the 

original CODAR and de-tided CODAR data from location 349 in the Mid 
Atlantic Bight.  Also shown are estimates of the dispersion coefficient based on 
the assumption that Equation 10 can represent the autocorrelation function.  

 
With an estimate of the autocorrelation time scale, one can assess the impact of assuming that a 
random flight model approximates the dispersion of the drifters.  Restricting attention to cluster 
RI_A, Figure E-13a shows a comparison of a random flight model fit to the mean squared 
separation distance data, assuming a median dispersion coefficient of 40 m2/sec and 
autocorrelation time scales of 6, 12, 24, and 48 hours.  Six hours is approximately the value 
determined from an analysis of the CODAR data (Figures E-15a and b).  It is noted that the 
variations of the autocorrelation time scale over the range selected have very little impact on 
estimates of the mean squared separation distance.  It is clear that there is insufficient data to 
estimate the improvements resulting from use of a random flight model. Application of an 
unconstrained two-dimensional optimization method gives a K=102 m2/s and T=7.6 hr for 
cluster AB_A.  Once again the use of a random flight model provides no benefit over a random 
walk approximation in the present application. 

E.4 Comparison of velocities derived from SLDMB versus CODAR 

Anticipating the use of the CODAR data as input to a search and rescue model, it would be 
useful to compare the observed surface current data from the CODAR system and similar data 
derived from the SLDMB drifters.  The velocities of the seven SLDMB drifters were therefore 
estimated at 1/2 hour time intervals by dividing the distance traveled by the elapsed time in the 
east/west and north/south directions.  SLDMB data were available every half hour.  These values 
were extremely erratic due to ubiquitous irregularities in the original position versus time files. 
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The data were edited to remove outliers, the majority of which were not contiguous in time.  The 
effect of the editing was a smoother and more realistic velocity field.  It was assumed that the 
drifters and CODAR data both represented the currents in the upper meter of the water column, 
and hence the two measurements could be compared directly. 

The CODAR velocity at a particular SLDMB location and at a given time was estimated using 
inverse-distance weighting of the nearest five CODAR grid points in space and linear 
interpolation in time.  If the distance to any CODAR grid point was greater than 4 km, the data 
were not used.  

Figures E-9a and b show the SLDMB trajectories, as well as the CODAR data coverage (50 
percent> and <50 percent) contours over the experimental period for the Block Island Sound and 
Mid Atlantic Bight areas, respectively.  Comparison of the above and below 50 percent coverage 
in the two areas shows that the difference is minimal in the Block Island Sound and substantial in 
the Mid Atlantic Bight.   

Time series plots were prepared to compare the CODAR-observed and SLDMB-derived 
currents, and are provided in Figures E-16a, b, and c for the Block Island Sound (a, b) and Mid 
Atlantic Bight (c) drifter clusters, respectively.  The upper panels show the SLDMB (thick) and 
CODAR (thin) velocities, and the lower panel the corresponding differences.  Figure E-17 
provides scatter plots for the east (light gray) and north (black) velocity and the associated 
correlation coefficients. 

In general, the difference in velocity between the drifter-derived currents and those from 
CODAR are similar in magnitude to their speed.  The variance and the autocorrelation time of 
the difference (errors) are also similar for both SLDMB and CODAR velocities.  Tidal variations 
are dominant in Block Island Sound and are clearly evident in both data sets.  They are less 
prevalent in the Mid Atlantic Bight observations.  For the three buoys released in Block Island 
Sound (32773, 32776, and 32779), the scatter plots (Figure E-17) show a correlation of less than 
0.1 for the east component and greater than 0.6 for the north component.  This is consistent with 
the dominant axis of the tidal current ellipses, which are generally north/south in the area of the 
releases.  For the Mid Atlantic Bight buoys, the scatter plots show a correlation coefficient of 
greater than 0.75 for the east component (onshore-offshore) and less than about 0.4 for the north 
component.  This behavior is just the opposite of the releases in Block Island Sound.  The radar 
obtains a more accurate measure of the onshore-offshore flow than the along-shelf flows.  Both 
correlation coefficients are observed to be lower in areas where the percent data return is below 
50 percent (compare correlation coefficients for 43061 with those for 43057 and 43060). 
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Figure E-16a.  Time series of the SLDMB and CODAR derived currents (upper three) and the 

difference between the two (lower three) for drifters released in Block Island 
Sound (see Figure E-9a). 
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Figure E-16b.  Time series of the SLDMB and CODAR derived currents (upper three) and the 

difference between the two (lower three) for drifters released in Block Island 
Sound and transported into the Mid Atlantic Bight (see Figures E-9a and b). 
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Figure E-16c.  Time series of the SLDMB and CODAR derived currents (upper four) and the 

difference between the two (lower four) for drifters released in the Mid Atlantic 
Bight (See Figure E-9b). 
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Figure E-17.  Scatter plots for the east (u, light gray) and north (v, black) components of the 

velocity derived from the CODAR and SLDMB data, with associated 
correlation coefficient.  The drifter number is provided in the top left corner of 
each plot.  
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E.5 Estimates of dispersion coefficients based on CODAR data 

Estimates of the dispersion coefficients for the Block Island Sound and Mid Atlantic Bight 
region were made based on an analysis of all the data collected over the SLDMB deployment 
period, where the CODAR data return was above 50 percent.  Table E-4 summarizes the bulk-
averaged, east/west and north/south velocity variance, average error variance, and the median 
autocorrelation time scale.  The velocity variance and estimates of the velocity error were 
obtained directly from the CODAR data processing system.  The dispersion coefficients were 
calculated using Equation 3, assuming that T is the autocorrelation time scale, which decreased 
exponentially with time.  Dispersion coefficients based on both the velocity and errors variance 
are provided.  Estimates based on the separation analysis presented above in Table E-3 are 
included for comparison. 

Table E-4.  Estimates of the dispersion coefficients based on CODAR data for Block Island 
Sound and Mid Atlantic Bight. 

 Block Island Sound Mid Atlantic Bight 

Parameter East/west North/south East/west North/south 
Average variance (cm2/sec2) 552.6 438.3 331.6 345.9 
Average error (cm2/sec2)  45.3  29.8 107.3 217.0 
Median T* (hrs)  3.7    2.8    5.0    5.0 
Dispersion coefficient (m2/sec)     
Based on variance 726.2 441.8 596.8 622.6 
Based on error  59.5   30.1 193.2 390.6 
Based on separation analysis 40 85   
* T - autocorrelation time scale     

 
Using the velocity variances gives very large values of the dispersion coefficient for both areas, 
particularly for Block Island Sound.  These large values are at least partially attributable to the 
horizontal shear in the tidal current fields in Block Island Sound.  Replacing the variance with 
the CODAR velocity errors and using the autocorrelation time of the velocity reduces the 
dispersion to the range of separation analysis-based values.  

E.6 SARMAP simulations of SLDMB trajectories  

SARMAP (ASA, 2003) simulations were performed using the CODAR data as input to predict 
the movement of the trajectories of the SLDMB drifters for the Mid Atlantic Bight releases (and 
for the Block Island releases as they drifted into the area covered by the Mid Atlantic Bight radar 
system).  Each day-long simulation started at the reported SLDMB location at midnight.  A 1-
day simulation interval was used, as it is typical of the time scale of a search forecast period.  
Simulations were repeated with a new start at the current SLDMB position each succeeding day, 
with no overlap in time.  Based on the availability of SLDMB data, 178 independent simulations 
(Table E-5) were performed. 
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Table E-5.  Number of simulations performed for each SLDMB. 
SLDMB Period (Y2004) Simulations 

32773 Aug 2 - Aug 31 30 
32776 Aug 2 - Aug 31 30 
32779 Aug 2 - Aug 31 30 
43057 Aug1 - Aug 31 31 
43060 Aug1 - Aug 31 31 
43061 Aug1 - Aug 31 26 
43062 (not used as the record is too short)  
 Total 178 

 
This series of simulations was performed to characterize the advection transport fields and hence, 
no diffusion/dispersion was used.  A typical simulation ended with the predicted location of the 
drifter some distance away from the observed location.  The difference in final location between 
the observed and model predictions is a result of errors in the buoy location and the CODAR 
estimated currents and the turbulence inherent both in the buoy movements and CODAR 
observations.  Independent of the reasons, the difference in location provides an estimate of the 
equivalent diffusion value such that the observed location of the buoy was within the model 
predicted search area.  With observed velocities in range of 5 to 18 km/day and CODAR grid 
resolutions of 6 km in the Mid Atlantic Bight, trajectory predictions sampled no more than a few 
grids of current data in the day-long simulations; hence, current shear cannot be an important 
contributing factor to the model-predicted position of the drifters.  

Figure E-18 shows the trajectories of each buoy (continuous dark gray thick line) and the 
corresponding model predicted trajectories (black lines), at 1-day intervals.  A circle is drawn for 
each simulation centered at the model-predicted buoy location at the end of one day with a radius 
equivalent to the distance from the predicted to the observed location at the end of the day.  This 
circle represents the minimum area required so that the target (search object) is within the model-
predicted search area.  The above and below 50 percent CODAR data return are noted by the 
contour intervals.  In general, the circle sizes approximately inversely reflect the CODAR 
percent coverage, the higher the coverage the smaller the circle size.  The circle sizes are 
particularly large immediately south of Long Island.  When CODAR returns are higher, better 
estimates of the velocity are obtained and reflected in lower differences between predictions and 
observations.  
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Figure E-18.  Observed SLDMB trajectories and corresponding SARMAP predictions for 1-day 

simulations, restarted every day along the SLDMB path.  Also shown is an 
inclusion circle, which is bounded by the ends of the observed and model 
predicted trajectories. 

 
Figure E-19 provides histograms of the separation distance between the predicted and observed 
locations of the buoys at 3, 6, 12, and 24 hrs after the start of the simulation.  The last panel is a 
repeat of the results at 24 hrs showing additional details of the frequency distribution as well as 
the cumulative distribution.  Figure E-20 shows the same data but in terms of the average and 
95th percentile separation distances versus time.  Both plots show that the separation distance 
increases and the distribution gets broader and flatter with time.  At the end of the simulations, 
the maximum separation distance is ~30 km.  The maximum occurrence distance is in the range 
of 3 to 4 km.  The median distance is 7 km and the average is 9.3 km.  The 95th percentile 
separation distance is 23 km.  These results are consistent with similar analyses performed on 
CODAR data and SDLMB buoy deployment in Middle Atlantic Bight by Ullman et al, (2002), 
which show 95th percentile separation distances at the end of 1 day of 25 km. 
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Figure E-19.  Histograms of the separation distance between model-predicted and observed for 

the SLDMBs at 3, 6, 12, and 24 hrs after the start of the simulation.  The last 
panel shows the distribution and cumulative separation distance distribution at the 
end of 1 day. 
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Figure E-20.  Average and 95th percentile separation distance as a function of time from the start 

of the simulation. 

 
Figure E-21 shows a plot of the separation distance at the end of the day versus the SLDMB drift 
speed for that day.  In general, the trend, while statistically very weak, shows that the separation 
distance increases as the mean drift speed increases.  The separation distance is approximately 
80% of the observed buoy movement over 1 day. 
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Figure E-21.  Separation distance between predicted and observed locations of the SLDMB at 

the end of each day versus distance traveled by the SLDMB during that day.  A 
linear curve fit to the data is provided (solid line) with the corresponding 
correlation coefficient. 

 
Using Equation 4 (random walk model) and assuming that t is the time from release and the 
separation distance is equivalent to S1, an estimate can be made of the dispersion coefficient that 
must be used in the search and rescue model in order to ensure that model predictions give a 
search area that includes the observed location of the buoy.  Figure E-22 shows a histogram of 
the dispersion coefficients based on this analysis.  
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Figure E-22.  Histogram of dispersion coefficients based on an application of a random walk 

model to the separation distances at the end of 1-day simulation. 

 
A diffusion coefficient of 40 m2/sec is the most frequent match (~20 percent) and represents up 
to 35 percent of the simulations and 100 m2/sec up to 60 percent.  The larger values of dispersion 
(greater than 500 m2/sec) occur in areas of low radar data returns and are not representative.  The 
values of the dispersion coefficients from this estimate are consistent with those estimated using 
the SLDMB cluster analysis above. 

If the diffusion coefficient were kept the same and the random flight were employed, the search 
radius would be expected to shrink and miss the target depending on the autocorrelation time, or 
conversely, the diffusion coefficient must be larger than the values shown in Figure E-22. 

E.7 Conclusions 

A review of stochastic particle models is presented and shows a well-established hierarchy with 
position, velocity and acceleration progressively described as Markovian processes.  The 
governing equations for each are provided.  Numerical implementation and testing against an 
analytic solution for diffusive spreading of both random walk and flight models are presented.  
The numerical model is shown to give predictions in good agreement with the analytic solution 
when the results are based on 2,000 or more independent simulations.  Parameteric studies show 
that the random flight model predicts a smaller search area, compared to the random walk model 
beginning immediately after the initiation of the simulation and continuing with time.  The 
difference in area becomes constant and scales as the diffusion coefficient, K, times the velocity 
autocorrelation time scale, T.  For time >>T, the search area ratio (Ra) can be approximated by 
Ra = 1- T/t.  The ratio of the search areas hence decreases as time increases.  The random flight 
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model is therefore expected to have the largest impact in reducing the size of the search area at 
time scales shorter than T. 

Based on the drifter cluster analysis, dispersion coefficients of 40 to 85 m2/sec were estimated 
for the 35-day experiments by fitting the observations to a random walk model.  The variability 
in these estimates was very large however, covering a range from 20 to almost 200 m2/sec.  
These dispersion coefficients are broadly consistent with Okubo’s (1971) 4/3rds power law and 
within the range of variability of his curve fit to field data.  The high level of uncertainty in the 
estimates is clearly a result of the very limited number of drifter trajectories available to perform 
the analysis.  One surprising finding was that several of the drifters in the Mid Atlantic Bight 
region tracked very closely with one another over a period of almost 25 days.  The upper bound 
separation distances were in the range of 1 to 3 km.  This implies very low dispersion (0.5 
m2/sec) for this particular cluster of drifters. 

Random flight models were applied to the drifter data to determine their impact on dispersion of 
the drifters.  The autocorrelation time scale was estimated using CODAR data and gave values in 
the range of 3.5 to 6.5 hrs for the Mid Atlantic Bight when the original and de-tided data, 
respectively, were used.  No improvement was observed in the ability of a random flight model 
to predict the dispersion of the drifters because of the large uncertainty in the dispersion 
coefficient.  Based on the present results, there is no motivation to implement higher order 
stochastic trajectory models for search and rescue until better estimates of turbulent dispersion 
become available.  

Direct comparisons of the velocities derived from the drifters and CODAR observations showed 
that the differences are similar in magnitude to their speed.  The variance and the autocorrelation 
time of the difference (errors) are also similar.  Semi-diurnal tidal variations are clearly evident 
in both data sets; dominant in Block Island Sound, but much smaller in the Mid Atlantic Bight.  
Inertial oscillations, with periods of about 19 hrs, are dominant in the Mid Atlantic Bight, but not 
observed in Block Island Sound.  Scatter plots for the Block Island Sound cluster show a 
correlation of less than 0.1 for the east/west component and greater than 0.6 for the north/south 
component.  For the Mid Atlantic Bight clusters the scatter plots show a correlation coefficient of 
greater than 0.75 for the east/west component (onshore-offshore) and less than about 0.4 for the 
north/south component.  This behavior is just the opposite of the Block Island Sound cluster.  
Correlation coefficients are observed to be much lower in areas where the percent data return is 
below 50 percent. 

Estimates of the dispersion coefficients for both north/south and east/west components were 
made using the CODAR variance and error data and the median autocorrelation time scale for 
Block Island Sound and the Mid Atlantic Bight.  The dispersion coefficients, based on the 
velocity variances, were comparable in the two directions in both areas with values in the range 
of 450 to 700 m2/sec.  Using velocity errors, the dispersion coefficients were in the range of 30 to 
60 m2/sec in Block Island Sound and 200 to 400 m2/sec in the Mid Atlantic Bight.  These 
compare to median values of 40 and 85 m2/sec for Block Island Sound and Mid Atlantic Bight, 
respectively, based on the cluster analysis. 

A total of 178 statistically independent simulations was performed using SARMAP to predict the 
daylong trajectories at successive locations along the paths of the seven SLDMB in the Mid 
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Atlantic Bight.  Comparison of the model predicted and observed locations at the end of one day 
showed a median separation distance of 7 km, an averaged distance of 9.3 km, a maximum 
distance of 30 km and the most frequent occurrence distance of 3 to 4 km.  The error in location 
was roughly comparable (about 80 percent) to the distance the drifter traveled in 1 day (5 to 18 
km/day).  Errors in predictions were significantly higher in areas where the CODAR data return 
rates were less than 50 percent (immediately south of Long Island and near the shelf break).  
Estimates of the dispersion coefficients necessary as input to the model, to ensure that the 
predicted and observed locations were within the model predicted search area, were made for 
each simulation.  The resulting dispersion coefficients ranged from 20 to 2,000 m2/sec, with most 
in the range of 20 to 300 m2/sec.  The median value was about 90 m2/sec and the most frequent 
values 40 to 60 m2/sec.  The largest dispersion coefficients were associated with areas where the 
CODAR data returns were lowest and hence, not representative.  

Estimates of the median horizontal dispersion coefficient based on cluster analysis, CODAR 
velocity errors, and SARMAP trajectory analysis give values of 40 m2/sec, 30 to 60 m2/sec, and 
(no trajectory analysis in Block Island Sound), respectively for Block Island Sound.  Similar 
values for the Mid Atlantic Bight were 85, 200 to 400, and 90 m2/sec.  This range of values is 
consistent with Okubo’s 4/3rds power law, which gives values in the range of 20 to 200 m2/sec, 
for time scales of 5 to 30 days. 
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